| 研究生: |
張建偉 Chang, Chien-Wei |
|---|---|
| 論文名稱: |
配置不對稱撓曲鋼筋之梁在彎矩與扭矩組合載重下的承力行為研究 Behavior of Unsymmetrical-Reinforced Concrete Beams under Combined Bending and Torsion |
| 指導教授: |
方一匡
Fang, I-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 組合載重 、扭矩 、彎矩 、表面應變 、裂縫寬度 、破壞模式 |
| 外文關鍵詞: | bending, torsion, crack width |
| 相關次數: | 點閱:58 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文旨在探討配置不對稱縱向鋼筋量之梁受到彎矩和扭矩組合載重作用下之承力行為。本研究共規劃8根350 �e 500 mm之矩形斷面鋼筋混凝土梁試體,全長約為3100 - 4400 mm,在相同配筋條件下,分別承受不同彎矩加扭矩組合載重作用,主要討論之變數為扭矩和彎矩比值(T/M)。
研究結果顯示,在組合載重中,試體表面應變受彎矩所造成的正向應力影響較大,且第一類破壞模式之試體側面裂縫寬度隨T/M比值的增加而減小;第二類破壞模式之試體側面裂縫寬度不隨T/M比值而有明顯趨勢,平均主張應變、裂縫數目及平均裂縫間距,與局部量測之裂縫寬度有合理的關連性。此外,當試體之破壞模式轉換時,最大平均主壓應變發生面亦隨之轉換,且所有試體之底面平均主張應變較其他三面大。
none
1. Lessig, N. N., “Determination of Load-Carrying Capacity of Rectangular Reinforced Concrete Elements Subjected to Flexural and torsion,” Trudy No. 5, Institut Betona i Zhelezobetona (Concrete and Reinforced Concrete Institute), Moscow, 1959, pp. 5-28(in Russian). Translated by Portland Cement Association, Foreign Literature study No. 371. Available from S.L.A. Translation Center, The John Crerar Library Translation Center, 35 W. 33rd St., Chicago, Illinois 60616.
2. Lessig, N. N., “Studies of Cases of Concrete Failure in Rectangular Reinforced Concrete Elements Subjected to Combined Flexure and Torsion,” Design of Reinforced Structures, State Publishing Offices of Literature on Structural Engineering, Architecture and Construction Materials(Moscow), 1961, pp. 229-271(in Russian). Translated by Portland Cement Association, Foreign Literature Study No.398.
3. State Committee on Construction of the USSR council of Ministers, “Structural Standards and Regulations .” SNiP II-B, 1-62, State Publishing Offices for literature on Structural Engineering, Architecture and Structural Materials, Moscow, 1962(in Russian).
4. Collins, M. P.; Walsh, P. F.; Archer, F. E. and Hall, A. S., “Ultimate Strength of Reinforced Concrete Beam Subjected to Combined Torsion and Bending,” Torsion of Structural Concrete, SP-18, American Concrete Institute, Detroit, pp. 379-402, 1968.
5. Lampert, P, “Ultimate Strength of Reinforced Concrete Beams in Torsion and Bending, ” Dissertation No. 4445, Institut für Baustatik, ETH Zurich, P. 190, 1970.
6. Lampert, P and Collins, M. P., “Torsion, Bending, and Confusion-An Attempt to Establish the Facts, ” ACI Journal, Title No. 69-45, August 1972, pp. 500-504, 1972
7. Elfgren, L., “Reinforced Concrete Beams Loaded in Combined Torsion, Bending and Shear,” Publication 71:3, Division of Concrete Structures, Chalmers University of Technology, Goteborg, Sweden, 1972.
8. Hsu, T. C., “Torsion of Reinforced concrete, ” Rainbow-Bridge, Taiwan, pp. 253-254, 1984.
9. ACI Committee, “Building Code Requirements for structural Concrete (ACI 318-02) and Commentary (ACI318R-02), ” ACI Journal, P. 69, 2002.
10. 中國國家標準CNS,"混凝土抗彎強度試驗法(三分點載重法)",經濟部中央標準局,臺北,總號1233,類號A3046,1984。
11. Mohammed, T., “Experimental Investigation of the Shear Flow Zone in Torsional Members, ” Master’s thesis, University of Missouri-Rolla, P. 180, 1998.
12. Park R. and Paulay T., “Reinforced Concrete Structures, ” American, P. 496, 1975.
13. Gere, J. M. and Timoshenko, S. P., “Mechanics of Materials, ” Stanley Thornes, Cheltenham, pp. 188-197, 1990.