| 研究生: |
王昭允 Wang, Chao-Yun |
|---|---|
| 論文名稱: |
利用毛細管式微電漿系統對生物膜中變異鏈球菌之滅菌研究 Capillary tube based micro-plasma system for the sterilization of Streptococcus mutans in biofilms |
| 指導教授: |
廖峻德
Liao, Jiunn-Der |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 變異鏈球菌 、滅菌 、微電漿 、生物膜 |
| 外文關鍵詞: | Sreptococcus mutans, sterilization, micro-plasma, biofilms |
| 相關次數: | 點閱:61 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
變異鏈球菌於牙齒表面產生牙菌斑生物膜是導致蛀牙的主因,蛀牙之症狀輕則感覺疼痛,重則引起齒髓發炎,甚至發生蜂窩性組織炎,危及生命,目前傳統口腔滅菌方式如:漱口水之使用,會產生異味、造成牙齒染色、刺激口腔黏膜等缺點。因此,本研究希冀探討微電漿系統應用於口腔滅菌之可行性,因其屬於安全且較少刺激性之替代處理方式。
本實驗以射頻電源供應器作為毛細管式微電漿系統的激發源,使用功率為23 W,氬氣為主要激發氣體,氣體流量為15 L/min。為了應用於口腔使用,調控參數使電漿溫度低於37℃,於電漿激發過程中,以光學放射光譜儀即時監控電漿激發物種變化,如:NO、OH、O、Ar。處理標的有游離變異鏈球菌及生物膜中變異鏈球菌,並探討改變工作距離及處理時間之滅菌效果。在處理後,於掃描式電子顯微鏡下觀察其細菌形貌的變化及利用螢光顯微鏡即時觀察細菌活性。
由OES光譜分析中,距電漿噴口處越近,如:3 mm,其電漿內的物種較多,實驗結果顯示對於游離變異鏈球菌經30 sec電漿處理可達成滅菌;對於24及48 hours之生物膜經300 sec電漿處理分別可減少3.89及3.7個log CFU/mL。當工作距離延長至9 mm時,電漿內物種減少,導致滅菌效果下降,對於游離變異鏈球菌達滅菌時間須延長至120 sec;對於24及48 hours生物膜經300 sec電漿處理可減少菌落數降為2.88及2.89個log CFU/mL。電漿處理後之試片,經由SEM觀測,可看出細菌表面產生凹洞、甚至破碎之趨勢;螢光顯現紅色也代表細菌死亡。此結果顯示,本實驗裝置可以有效破壞細菌,使其呈現破碎狀態。
在本研究中,生物膜由於具有胞外基質可保護細菌及分散電漿物種,使滅菌成效下降。即使延長十倍處理時間至300 sec仍未達到滅菌,但藉由縮短工作距離及延長處理時間,可有效提升滅菌效率。本實驗證實電漿中反應性物種對於生物模是滅菌的主要因子,而電漿產生之UV光照射只能殺死表層細菌,因此,UV光並非主要滅菌因子。
Sreptococcus mutans is a significant cariogenic bacteria which would produce dental plaque on dental surface. The symptons of dental caries may lead to toothache, tooth pulp inflammation, even fatal cellulitis. The disadvantages of conventional methods for oral sterilization (eg., Chlorhexidine or Listerine mouthwashes) included producing peculiar smell, tooth staining, or oral mucosa irritation. Therefore, we wanted to discuss the possibility of micro-plasma systems for oral sterilization, because plasma was a safe and less aggressive alternative treatment way.
In this study, we used radio frequency power supply (23 W) to generate atmospheric pressure argon micro-plasma, the gas flow rate was 15 L/min. For oral usage, the plasma temperature was controlled to smaller than 37℃. In addition, we also used optical emission spectroscopy (OES) to detect the excited species (eg., NO, OH, O, and Ar) during plasma excitation process. The planktonic bacteria and biofilms containing specimens were exposed to micro-plasma for different exposure time and various working distances. After treatment, we evaluated the sterilization efficiency and observed the morphological change of the bacteria by a scanning electron microscopy (SEM). In addition, we also used fluorescence microscopy to observe bacterial viability immediately after the sterilization.
From OES spectroscopy, as working distance decreased to 3 mm, the excited species in micro-plasma increased. For this reason, it just took 30 sec to achieve sterilization for planktonic bacteria;for biofilms of 24 and 48 hours, it could reduce 3.89 and 3.7 log CFU/mL after 300 sec plasma treatment. As working distance increased to 9 mm, the micro-plasma excited species decreased, so the sterilization efficiency decreased. For planktonic bacteria, the sterilization time must extended to 120 sec;for 24 and 48 hours biofilms, it could only reduced 2.88 and 2.89 log CFU/mL. Based on SEM images, the bacteria appeared concaves or broken into debris after micro-plasma treatment;the red fluorescence also showed bacteria dead. These results showed our micro-plasma could destroy bacteria effectively.
In this study, biofilms had extracellular polymeric substances that could protect bacteria and disperse plasma excited species, so the sterilization efficiency decreased. Even we extended tenfold treatment time to 300 sec, it still could not achieve sterilization. If we decreased working distance and extended treatment time, it could promote sterilization efficiency. This study confirmed that plasma reactive species was main sterilization factors for biofilms. Plasma induced UV radiation could only kill surface bacteria, so plasma induced UV was not main sterilization factors for biofilms.
1. 劉仲康, “漫談微生物腐蝕”, 科學月刊雜誌社, 1990年7月247期。
2. 劉雨田, “新編微生物學”, 永大書局, 2008年3月最新修訂版。
3. M. Moisan, J. Barbeau, S. Moreau, J. Pelletier, M. Tabrizian, and L. H. Yahia, “Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms”, International Journal of Pharmaceutics, Vol. 226, 1-21, 2001.
4. M. Laroussi, “Non-thermal decontamination of biological media by atmospheric pressure plasmas: review, analysis and prospects”, IEEE Transactions on Plasma Science, Vol. 30, 1409-1415, 2002.
5. M. Laroussi, and X. Lu, “Room-temperature atmospheric pressure plasma plume for biomedical applications”, Applied Physics Letters, Vol. 87, 113902, 2005.
6. M. G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. v. Dijk, and J. L. Zimmermann, “Plasma medicine: an introductory review”, New Journal of Physics, Vol. 11, 115012-115047, 2009.
7. G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets, and A. Fridman, “Applied plasma medicine”, Plasma Processes and Polymers, Vol. 5, 503-533, 2008.
8. M. Laroussi, D. A. Mendis, and M. Rosenberg, “Plasma interaction with microbes”, New Journal of Physics, Vol. 5, 1-10, 2003.
9. I. E. Kieft, J. J. B. N. Van Berkel, E. R. Kieft, and E. Stoffels, “Radicals of plasma needle detected with fluorescent probe”, Plasma Processes and Polymers, 295-308, 2005.
10. A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, “The atmospheric-pressure plasma jet: a review and comparison to other plasma sources”, IEEE Transactions on Plasma Science, Vol. 26, 1685-1694, 1998.
11. C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, "Atmospheric pressure plasmas: A review", Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 61, 2-30, 2006.
12. S. Rupf, A. Lehmann, M. Hannig, B. Schafer, A. Schubert, U. Feldmann, and A. Schindler, “Killing of adherent oral microbes by a non-thermal atmospheric plasma jet”, Journal of Medical Microbiology, Vol. 59, 206-212, 2010.
13. C. C. Weng, J. D. Liao, T. Y. Lin, and C. L. Huang, “Capillary tube based oxygen/argon micro-plasma system for the inactivation/sterilization of bacteria suspended in aqueous solution”, International Journal of Radiation Biology, article in press, 2010.
14. N. Abramzon, J. C. Joaquin, J. Bray, and G. B. Marino, “Biofilm Destruction by RF High-Pressure Cold Plasma Jet”, IEEE Transactions on Plasma Science, Vol. 34, 1304-1309, 2006.
15. J. C. Joaquin, C. Kwan, N. Abramzon, K. Vandervoort, and G. B.Marino, “Is gas-discharge plasma a new solution to the old problem of biofilm inactivation?”, Microbiology, Vol. 155, 724-732, 2009.
16. U. Cvelbar, D. Vujoaevi, Z. Vratnica, and M. Mozeti, “The influence of substrate material on bacteria sterilization in an oxygen plasma glow discharge”, Journal of Physics D: Applied Physics, Vol. 39, 3487-3493, 2006.
17. M. Moisan, J. Barbeau, S. Moreau, J. Pelletier, M. Tabrizian, and L. H. Yahia, “Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms”, International Journal of Pharmaceutics, Vol. 226, 1-12, 2001.
18. B. Gweon, D. B. Kim, S. Y. Moon, and W. Choe, “Escherichia coli deactivation study controlling the atmospheric pressure plasma discharge conditions”, Current Applied Physics, Vol. 9, 625-628, 2009.
19. T. R. De Kievit, R. Gillis, S. Marx, C. Brown, and B. H. Iglewski, “Quorum-sensing genes in Pseudomonas aeruginosa biofilms: Their role and expression patterns”, Applied and Environmental Microbiology, Vol. 67, 1865-1873, 2001.
20. P. Stoodley, K. Sauer, D. G. Davies, and J. W. Costerton, “Biofilms as complex differentiated communities”, Annual Review of Microbiology, Vol. 56, 187-209, 2002.
21. H. Stoodley, and P. Stoodley, “Developmental regulation of microbial biofilms ”, Current Opinion in Biotechnology, Vol. 13, 228-233, 2002.
22. P. Stoodley, Z. Lewandowski, and J. D. Boyle, “The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow”, Environmental Microbiology, Vol. 1, 447-455, 1999.
23. J. W. Costerton, K. J. Cheng, and G. G. Geesey, “Bacterial biofilms in nature and disease”, Annual Review of Microbiology, Vol. 41, 435-464, 1987.
24. J. W. Costerton, R. Veeh, and M. Shirtliff, “The application of biofilm science to the study and control of chronic bacterial infections”, The Journal of Clinical Investigation, Vol. 112, 1466-1477, 2003.
25. E. A. Kidd, “Role of chlorhexidine in the management of dental caries”, International Dental Journal, Vol. 41, 279-286, 1991.
26. A. J. McBain, R. G. Bartolo, C. E. Catrenich, D. Charbonneau, R. G. Ledder, and P. Gilbert, “Effects of chlorhexidine gluconate-containing mouthwash on the vitality and antimicrobial susceptibility of in vitro oral bacterial ecosystems”, Applied and Environmental Microbiology, Vol. 69, 4770-4776, 2003.
27. B. M. Eley, “Antibacterial agents in the control of supragingival plaque-a review”, British Dental Journal, Vol. 186, 286-296, 1999.
28. I. Ishikawa, J. Frame, and A. Aoki, “Lasers in dentistry: Revolution of dental treatment in the new millennium”, International Congress Series 1248, Amsterdam, The Netherlands: Elsevier, 2003.
29. I. Langmuir, “Oscillations in ionized gases”, Proceedings of the National Academy of Sciences of the United States of America, Vol. 14, 627-637, 1928.
30. U. Kogelschatz, “Applications of microplasmas and microreactor technology”, Contributions to Plasma Physics, Vol. 47, 80-88, 2007.
31. K. H. Becker, K. H. Schoenbach, and J. G. Eden, “Microplasmas and applications”, Journal of Physics D: Applied Physics, Vol. 39, 55-70, 2006.
32. K. H. Becker, “High-pressure microplasmas, a new world of low-temperature plasmas”, 2005.
33. A. L. Garner, “Cathode spot motion in an oblique magnetic field”, Applied Physics Letters, Vol. 92, 011505, 2008.
34. Y. H. Lee, C. H. Yi, M. J. Chung, and G. Y. Yeom, “Characteristics of He/O2 atmospheric pressure glow discharge and its dry etching properties of organic materials”, Surface and Coatings Technology, Vol. 146, 474-479, 2001.
35. M. Se Youn, W. Choe, and B. K. Kang, “A uniform glow discharge plasma source at atmospheric pressure”, Applied Physics Letters, Vol. 84, 188-190, 2004.
36. J. J. Shi, and M. G. Kong, “Radio-frequency dielectric-barrier glow discharges in atmospheric argon”, Applied Physics Letters, Vol. 90, 111502, 2007.
37. G. Chen, S. Chen, W. Feng, W. Chen, and S. Z. Yang, “Surface modification of the nanoparticles by an atmospheric room-temperature plasma fluidized bed”, Applied Surface Science, Vol. 254, 3915-3920, 2008.
38. A. Bogaerts, R. Gijbels, and J. Vlcek, “Modeling of glow discharge optical emission spectrometry: Calculation of the argon atomic optical emission spectrum”, Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 53, 1517-1526, 1998.
39. U. Cvelbar, N. Krstulovic, S. Milosevic, and M. Mozetic, “Inductively coupled RF oxygen plasma characterization by optical emission spectroscopy”, Vacuum, Vol. 82, 224-227, 2007.
40. M. Cooper, N. Vaze, S. Anderson, G. Fridman, V. N. Vasilets, A. Gutsol, A. Tsapin, and A. Fridman, “Spacecraft sterilization using non-equilibrium atmospheric pressure plasma”, 18th International Symposium on Plasma Chemistry, Kyoto, Japan, August 26-31, 2007.
41. L. Xu, H. Nonaka, H. Y. Zhou, A. Ogino, T. Nagata, Y. Koide, S. Nanko, I. Kurawaki, and M. Nagatsu, “Characteristics of surface-wave plasma with air-simulated N2-O2 gas mixture for low-temperature sterilization”, Journal of Physics D: Applied Physics, Vol. 40, 803-808, 2007.
42. Y. Jin, C. Ren, Z. Xiu, D. Wang, Y. Wang, and H. Yu, “Comparison of Yeast Inactivation Treated in He, Air and N2 DBD Plasma”, Plasma Science and Technology, Vol. 8, 720-723, 2006.
43. D. Yixiang, C. Huang, and Q. S. Yu, “Cold plasma brush generated at atmospheric pressure”, Review of Scientific Instruments, Vol. 78, 015104, 2007.
44. Q. S. Yu, C. Huang, F. H. Hsieh, H. Huff, and Y. Duan, “Bacterial inactivation using a low-temperature atmospheric plasma brush sustained with argon gas”, Journal of Biomedical Materials Research. Part B, Applied Biomaterials, Vol. 80, 211-219, 2007.
45. Q. S. Yu, C. Huang, F. H. Hsieh, H. Huff, and Y. Duan, “Sterilization effects of atmospheric cold plasma brush”, Applied Physics Letters, Vol. 88, 013903, 2006.
46. B. Yang, J. Chen, Q. Yu, H. Li, M. Lin, A. Mustapha, L. Hong, and Y. Wang, “Oral bacterial deactivation using a low-temperature atmospheric argon plasma brush”, Journal of Dentistry, Vol. 39, 48-56, 2011.
47. R. E. J. Sladek, S. K. Filoche, C. H. Sissons, and E. Stoffels, “Treatment of Streptococcus mutans biofilms with a nonthermal atmospheric plasma”, Letters in Applied Microbiology, Vol. 45, 318-323, 2007.
48. L. Xu, Y. Tu, Y. Yu, M. Tan, J. Li, and H. Chen, “Augmented survival of Neisseria gonorrhoeae within biofilms: exposure to atmospheric pressure”, European Journal of Clinical Microbiology and Infectious Diseases, Vol. 30, 25-31, 2011.