簡易檢索 / 詳目顯示

研究生: 吳彥萱
Wu, Yen-Hsuan
論文名稱: 探討金黃色葡萄球菌殺白細胞毒素Luekocidin AB對於嗜中性白血球的致病性
New insights into the role of leukocidin AB in the pathogenesis of Staphylococcus aureus in neutrophil
指導教授: 齊嘉鈺
Chi, Chia-Yu
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 117
中文關鍵詞: 金黃色葡萄球菌殺白細胞素AB多形核白血球NLRP3發炎小體嗜中性白血球胞外誘捕網細胞壞死
外文關鍵詞: Staphylococcus aureus, leukocidin AB, polymorphonuclear neutrophils, NLRP3 inflammasome, neutrophil extracellular traps, necrosis
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金黃色葡萄球菌 (Staphylococcus aureus)分泌多種細胞外毒素以損害不同的宿主細胞,進而導致相當多樣性的疾病。最新鑑定出的金黃色葡萄球菌成孔殺白細胞素AB (LukAB),對於包括多形核白血球 (polymorphonuclear neutrophils, PMNs)在內的多種免疫細胞具有毒性。此外,過去的研究也指出LukAB會促進免疫細胞產生免疫反應,包含導致巨噬細胞中NLRP3發炎小體的活化,進而引發細胞焦亡,以及促進PMNs釋放嗜中性白血球胞外誘捕網 (Neutrophil extracellular traps, NETs)。然而,LukAB是否造成PMNs中的發炎小體活化,以及LukAB所誘導NETs釋出的機制尚不清楚。在本研究中,我們使用已知會表現LukAB的金黃色葡萄球菌株,包含USA300和B56778,以及同源的LukAB剔除突變株和其衍生的LukAB回補株分別感染人類PMNs,以評估LukAB對於PMNs的致病機制。結果顯示,不論感染之金黃色葡萄球菌是否表現LukAB,造成PMNs細胞內NLRP3發炎小體相關分子,包含caspase-1、gasdermin D (GSDMD),以及介白素-1β (interleukin-1β,IL-1β)的活化程度相當。然而,僅有表現LukAB的菌株所感染的PMNs才會大量釋放IL-1β,並伴隨細胞死亡;進一步的研究證實,該種細胞死亡與細胞焦亡有所不同;LukAB破壞PMNs的細胞膜導致細胞壞死性死亡。此外,我們發現不論感染PMNs之金黃色葡萄球菌是否表達LukAB,皆會造成與發炎小體相關的GSDMD活化而形成NETs。然而,只有表達LukAB的菌株會促進NETs由PMNs中釋放。綜上所述,我們的結果顯示LukAB在PMNs細胞膜上形成孔洞的能力觸發了壞死性細胞死亡快速發生,同時伴隨著IL-1β和NETs從PMNs當中釋放。這些發現對於金黃色葡萄球菌感染期間,LukAB的致病機制以及其所造成的PMNs免疫反應提供了新見解。

    Staphylococcus aureus produces an array of extracellular toxins that damage host cells, leading to a wide spectrum of diseases. Leukocidin AB (LukAB), a recently identified bi-component pore-forming leukotoxin of S. aureus, is cytotoxic to immune cells including polymorphonuclear neutrophils (PMNs). Moreover, LukAB has been demonstrated to elaborate the immune response by promoting NLRP3 inflammasome activation and pyroptosis in macrophages, as well as neutrophil extracellular traps (NETs) extrusion in PMNs. However, the role of LukAB in inflammasome activation in PMNs and the underlying mechanism of LukAB-induced NETs remain unknown. In this study, we used LukAB-expressing S. aureus strains, USA300 and B56778, together with isogenic lukAB deletion mutants and complemented strains to evaluate the involvement of LukAB in PMN pathogenesis. The results showed comparable activation of NLRP3 inflammasome molecules, including caspase-1, gasdermin D (GSDMD), and IL-1β, in PMNs infected with S. aureus regardless of the presence or absence of LukAB. However, the release of IL-1β and cell death were observed only in the presence of LukAB, which was distinct from pyroptosis; LukAB disrupted the cell membrane of PMNs, leading to necrotic cell death. We also showed that GSDMD maturation, associated with inflammasome activation, played a role in NETs formation in PMNs infected with all S. aureus strains. However, only LukAB-expressing S. aureus strains promoted NETs extrusion. Taken together, our results suggested that the pore-forming ability of LukAB triggered a rapid necrosis, accompanied by the release of IL-1β and extrusion of NETs from PMNs. These findings provide insights into the pathogenic mechanisms of LukAB and its impact on the immune responses of PMNs during S. aureus infections.

    中文摘要 I Abstract II 誌謝 III Contents IV List of Tables IX List of Figures X List of Appendix XI Chapter 1. Introduction 1 1.1. Staphylococcus aureus 1 1.1.1. The Diseases and Pandemic of S. aureus 1 1.1.2. Methicillin-Resistant S. aureus (MRSA) 1 1.1.3. Alternative Therapeutic Strategy 2 1.2. Virulence Factors 2 1.2.1. Diversity of S. aureus Virulence Factors 2 1.2.2. Leukocidins 3 1.2.3. Leukocidin AB 4 1.3. Polymorphonuclear Neutrophils (PMNs) 5 1.3.1. Functions 5 1.3.2. Inflammasome Activation 5 1.3.3. Neutrophil Extracellular Traps 7 1.4. Rationale and Specific Aim 8 Chapter 2. Materials and Methods 10 2.1. Materials 10 2.1.1. Whole Blood Samples 10 2.1.2. Bacterial Strains 10 2.1.3. Plasmids 10 2.1.4. Primers 12 2.1.5. Chemical and Other Materials 14 2.2. Methods 22 2.2.1. Isolation of PMNs 22 2.2.2. Cell Culture 22 2.2.3. Bacterial Strains and Growth Conditions 22 2.2.4. Construction of Isogenic lukAB Deletion Mutant and Complemented Strains 23 2.2.4.1. Construction of Isogenic lukAB Deletion Mutant Strains 23 2.2.4.1.1. Plasmid DNA Isolation 23 2.2.4.1.2. Vector Preparation 24 2.2.4.1.3. Genomic DNA Isolation 24 2.2.4.1.4. Insert Preparation 24 2.2.4.1.5. Construction of lukAB Deleted Plasmid 25 2.2.4.1.6. Competent Cell Preparation 25 2.2.4.1.7. Transformation 26 2.2.4.1.8. Deletion of lukAB Gene 27 2.2.4.2. Construction of Complemented Strains 28 2.2.4.2.1. Plasmid Isolation 28 2.2.4.2.2. Construction of lukAB Complementation Plasmid 28 2.2.4.2.3. Competent lukAB Deleted Isogenic Mutant Cells Preparation 29 2.2.4.2.4. Transformation 29 2.2.5. PMNs Infection by S. aureus 29 2.2.6. Cytotoxicity Assay 30 2.2.7. NETs Formation and Extrusion Assay 30 2.2.8. LukAB Localization Assay 31 2.2.9. Trichloroacetic acid (TCA) Precipitation Assay 32 2.2.10. Cell Lysate Extraction Assay 32 2.2.11. Western Blot Analysis 33 2.2.12. Enzyme-Linked Immunosorbent Assay (ELISA) 34 2.2.13. Statistical Analysis 34 Chapter 3. Results 36 3.1. Generation of S. aureus lukAB-Positive and lukAB-Negative Isogenic Strains 36 3.2. Leukocidin AB is not the Sole Contributor to the NLRP3 Inflammasome Activation during S. aureus Infection 37 3.3. Leukocidin AB Induces Caspase-1-Mediated IL-1β Release and Necrotic Cell Death in PMNs 38 3.3.1. Leukocidin AB-Expressing S. aureus Promotes IL-1β Release and Cell Death in PMNs 38 3.3.2. Leukocidin AB-Promoted IL-1β Release from PMNs Is Dependent on Caspase-1 Activation 39 3.3.3. Leukocidin AB-Induced IL-1β Release in PMNs is Independent of the Pore-Forming Activity of GSDMD 40 3.3.4. Leukocidin AB-Induced Cell Death is Distinct from Pyroptosis 40 3.3.5. Leukocidin AB-Contributed Cell Death Shares the Features with Necrosis 41 3.3.6. Leukocidin AB Exhibits Potential Pore-Forming Activity on PMNs 42 3.4. Caspase-1/GSDMD Induces NETs Formation and Leukocidin AB Promotes NETs Extrusion 43 3.4.1. Caspase-1/GSDMD, but not Leukocidin AB, Contributes to the Formation of NETs in PMNs Infected with S. aureus 43 3.4.2. Leukocidin AB Promoted NETs Extrusion 45 Chapter 4. Conclusion 47 Chapter 5. Discussion 48 5.1. Roles of Pore-Forming Toxins in Promoting the Release of Processed-Immune Contents 48 5.2. Roles of Leukocidin AB in Inflammasome Activation in PMNs and Macrophages during S. aureus Infection 50 5.3. Resistance of PMNs to Caspase-1/GSDMD-Promoted Pyroptosis during Early S. aureus Infection 52 5.4. Virulence Factors Promoting Nets Formation during S. aureus Infections 54 5.5. Mechanisms Involving Leukocidin AB-Induced Necrosis via Extracellular or Intracellular Pathways 55 5.6. Potential Roles of Leukocidin AB in Exacerbating Inflammatory Diseases and Septicemia during S. aureus Infection 57 5.7. Targeting Leukocidin AB-Neutralizing Antibodies can be a Promising Therapeutic Approach 59 5.8. Limitations 60 5.8.1. Species-Specific Features of Leukocidin AB Leaves Limitation Approaching in Vivo Studies 60 5.8.2. Short Lifespan of PMN in Elucidating the Leukocidin AB-Triggered Immune Responses during the Longer Infection of S. aureus 60 References 61 Figures 80 Appendix 110

    1. Cheung, G. Y. C., J. S. Bae, and M. Otto. 2021. Pathogenicity and virulence of Staphylococcus aureus. Virulence 12: 547-569.
    2. Tong, S. Y., J. S. Davis, E. Eichenberger, T. L. Holland, and V. G. Fowler, Jr. 2015. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28: 603-661.
    3. Kluytmans, J., A. van Belkum, and H. Verbrugh. 1997. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 10: 505-520.
    4. Stevens, D. L., A. L. Bisno, H. F. Chambers, E. P. Dellinger, E. J. Goldstein, S. L. Gorbach, J. V. Hirschmann, S. L. Kaplan, J. G. Montoya, J. C. Wade, and A. Infectious Diseases Society of. 2014. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis 59: e10-52.
    5. Tacconelli, E., G. De Angelis, M. A. Cataldo, E. Pozzi, and R. Cauda. 2008. Does antibiotic exposure increase the risk of methicillin-resistant Staphylococcus aureus (MRSA) isolation? A systematic review and meta-analysis. J Antimicrob Chemother 61: 26-38.
    6. Lee, A. S., H. de Lencastre, J. Garau, J. Kluytmans, S. Malhotra-Kumar, A. Peschel, and S. Harbarth. 2018. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers 4: 18033.
    7. Chambers, H. F., and F. R. Deleo. 2009. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7: 629-641.
    8. Carrel, M., E. N. Perencevich, and M. Z. David. 2015. USA300 methicillin-resistant Staphylococcus aureus, United States, 2000-2013. Emerg Infect Dis 21: 1973-1980.
    9. Huang, Y. C., and C. J. Chen. 2022. USA300 (sequence type 8) has become a major clone of methicillin-resistant Staphylococcus aureus in northern Taiwan. Int J Antimicrob Agents 59: 106534.
    10. Tenover, F. C., and R. V. Goering. 2009. Methicillin-resistant Staphylococcus aureus strain USA300: origin and epidemiology. J Antimicrob Chemother 64: 441-446.
    11. Thurlow, L. R., G. S. Joshi, and A. R. Richardson. 2012. Virulence strategies of the dominant USA300 lineage of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). FEMS Immunol Med Microbiol 65: 5-22.
    12. Clegg, J., E. Soldaini, R. M. McLoughlin, S. Rittenhouse, F. Bagnoli, and S. Phogat. 2021. Staphylococcus aureus vaccine research and development: the past, present and future, including novel therapeutic strategies. Front Immunol 12: 705360.
    13. Aman, M. J., and R. P. Adhikari. 2014. Staphylococcal bicomponent pore-forming toxins: targets for prophylaxis and immunotherapy. Toxins (Basel) 6: 950-972.
    14. Kong, C., H. M. Neoh, and S. Nathan. 2016. Targeting Staphylococcus aureus toxins: a potential form of anti-virulence therapy. Toxins (Basel) 8: 72.
    15. Miller, L. S., V. G. Fowler, S. K. Shukla, W. E. Rose, and R. A. Proctor. 2020. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol Rev 44: 123-153.
    16. Bennett, M. R., and I. P. Thomsen. 2020. Epidemiological and clinical evidence for the role of toxins in S. aureus human disease. Toxins (Basel) 12: 408.
    17. Bubeck Wardenburg, J., and O. Schneewind. 2008. Vaccine protection against Staphylococcus aureus pneumonia. J Exp Med 205: 287-294.
    18. Gao, P., P. L. Ho, B. Yan, K. H. Sze, J. Davies, and R. Y. T. Kao. 2018. Suppression of Staphylococcus aureus virulence by a small-molecule compound. Proc Natl Acad Sci U S A 115: 8003-8008.
    19. Tam, K., K. A. Lacey, J. C. Devlin, M. Coffre, A. Sommerfield, R. Chan, A. O'Malley, S. B. Koralov, P. Loke, and V. J. Torres. 2020. Targeting leukocidin-mediated immune evasion protects mice from Staphylococcus aureus bacteremia. J Exp Med 217.
    20. Oliveira, D., A. Borges, and M. Simoes. 2018. Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins (Basel) 10: 252.
    21. Foster, T. J. 2005. Immune evasion by staphylococci. Nat Rev Microbiol 3: 948-958.
    22. O'Riordan, K., and J. C. Lee. 2004. Staphylococcus aureus capsular polysaccharides. Clin Microbiol Rev 17: 218-234.
    23. McAdow, M., D. M. Missiakas, and O. Schneewind. 2012. Staphylococcus aureus secretes coagulase and von Willebrand factor binding protein to modify the coagulation cascade and establish host infections. J Innate Immun 4: 141-148.
    24. Tam, K., and V. J. Torres. 2019. Staphylococcus aureus secreted toxins and extracellular enzymes. Microbiol Spectr 7: 2.
    25. Otto, M. 2014. Staphylococcus aureus toxins. Curr Opin Microbiol 17: 32-37.
    26. Grumann, D., U. Nubel, and B. M. Broker. 2014. Staphylococcus aureus toxins--their functions and genetics. Infect Genet Evol 21: 583-592.
    27. Deacy, A. M., S. K. Gan, and J. P. Derrick. 2021. superantigen recognition and interactions: functions, mechanisms and applications. Front Immunol 12: 731845.
    28. Ahmad-Mansour, N., P. Loubet, C. Pouget, C. Dunyach-Remy, A. Sotto, J. P. Lavigne, and V. Molle. 2021. Staphylococcus aureus toxins: An update on their pathogenic properties and potential treatments. Toxins (Basel) 13: 677.
    29. Spaan, A. N., J. A. G. van Strijp, and V. J. Torres. 2017. Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors. Nat Rev Microbiol 15: 435-447.
    30. Holzinger, D., L. Gieldon, V. Mysore, N. Nippe, D. J. Taxman, J. A. Duncan, P. M. Broglie, K. Marketon, J. Austermann, T. Vogl, D. Foell, S. Niemann, G. Peters, J. Roth, and B. Loffler. 2012. Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J Leukoc Biol 92: 1069-1081.
    31. Gillet, Y., B. Issartel, P. Vanhems, J. C. Fournet, G. Lina, M. Bes, F. Vandenesch, Y. Piemont, N. Brousse, D. Floret, and J. Etienne. 2002. Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet 359: 753-759.
    32. Chi, C. Y., C. C. Lin, I. C. Liao, Y. C. Yao, F. C. Shen, C. C. Liu, and C. F. Lin. 2014. Panton-Valentine leukocidin facilitates the escape of Staphylococcus aureus from human keratinocyte endosomes and induces apoptosis. J Infect Dis 209: 224-235.
    33. Spaan, A. N., M. Vrieling, P. Wallet, C. Badiou, T. Reyes-Robles, E. A. Ohneck, Y. Benito, C. J. de Haas, C. J. Day, M. P. Jennings, G. Lina, F. Vandenesch, K. P. van Kessel, V. J. Torres, J. A. van Strijp, and T. Henry. 2014. The staphylococcal toxins gamma-haemolysin AB and CB differentially target phagocytes by employing specific chemokine receptors. Nat Commun 5: 5438.
    34. Bhattacharya, M., E. T. M. Berends, R. Chan, E. Schwab, S. Roy, C. K. Sen, V. J. Torres, and D. J. Wozniak. 2018. Staphylococcus aureus biofilms release leukocidins to elicit extracellular trap formation and evade neutrophil-mediated killing. Proc Natl Acad Sci U S A 115: 7416-7421.
    35. Bhattacharya, M., E. T. M. Berends, X. Zheng, P. J. Hill, R. Chan, V. J. Torres, and D. J. Wozniak. 2020. Leukocidins and the nuclease nuc prevent neutrophil-mediated killing of Staphylococcus aureus biofilms. Infect Immun 88: e00372-00420.
    36. Scherr, T. D., M. L. Hanke, O. Huang, D. B. James, A. R. Horswill, K. W. Bayles, P. D. Fey, V. J. Torres, and T. Kielian. 2015. Staphylococcus aureus biofilms induce macrophage dysfunction through Leukocidin AB and alpha-toxin. mBio 6: e01021-01115.
    37. Dumont, A. L., T. K. Nygaard, R. L. Watkins, A. Smith, L. Kozhaya, B. N. Kreiswirth, B. Shopsin, D. Unutmaz, J. M. Voyich, and V. J. Torres. 2011. Characterization of a new cytotoxin that contributes to Staphylococcus aureus pathogenesis. Mol Microbiol 79: 814-825.
    38. Ventura, C. L., N. Malachowa, C. H. Hammer, G. A. Nardone, M. A. Robinson, S. D. Kobayashi, and F. R. DeLeo. 2010. Identification of a novel Staphylococcus aureus two-component leukotoxin using cell surface proteomics. PLoS One 5: e11634.
    39. DuMont, A. L., P. Yoong, C. J. Day, F. Alonzo, 3rd, W. H. McDonald, M. P. Jennings, and V. J. Torres. 2013. Staphylococcus aureus LukAB cytotoxin kills human neutrophils by targeting the CD11b subunit of the integrin Mac-1. Proc Natl Acad Sci U S A 110: 10794-10799.
    40. Trstenjak, N., D. Milic, M. A. Graewert, H. Rouha, D. Svergun, K. Djinovic-Carugo, E. Nagy, and A. Badarau. 2020. Molecular mechanism of leukocidin GH-integrin CD11b/CD18 recognition and species specificity. Proc Natl Acad Sci U S A 117: 317-327.
    41. Berends, E. T. M., X. Zheng, E. E. Zwack, M. M. Menager, M. Cammer, B. Shopsin, and V. J. Torres. 2019. Staphylococcus aureus impairs the function of and kills human dendritic cells via the lukab toxin. mBio 10: 01918.
    42. DuMont, A. L., P. Yoong, B. G. Surewaard, M. A. Benson, R. Nijland, J. A. van Strijp, and V. J. Torres. 2013. Staphylococcus aureus elaborates leukocidin AB to mediate escape from within human neutrophils. Infect Immun 81: 1830-1841.
    43. Melehani, J. H., D. B. James, A. L. DuMont, V. J. Torres, and J. A. Duncan. 2015. Staphylococcus aureus Leukocidin A/B (LukAB) kills human monocytes via host NLRP3 and ASC when extracellular, but not intracellular. PLoS Pathog 11: e1004970.
    44. Malachowa, N., S. D. Kobayashi, B. Freedman, D. W. Dorward, and F. R. DeLeo. 2013. Staphylococcus aureus leukotoxin GH promotes formation of neutrophil extracellular traps. J Immunol 191: 6022-6029.
    45. Rosales, C. 2020. Neutrophils at the crossroads of innate and adaptive immunity. J Leukoc Biol 108: 377-396.
    46. Rosales, C. 2018. Neutrophil: A cell with many roles in inflammation or several cell types? Front Physiol 9: 113.
    47. Kraus, R. F., and M. A. Gruber. 2021. Neutrophils-from bone marrow to first-line defense of the innate immune system. Front Immunol 12: 767175.
    48. Flannagan, R. S., V. Jaumouille, and S. Grinstein. 2012. The cell biology of phagocytosis. Annu Rev Pathol 7: 61-98.
    49. Gierlikowska, B., A. Stachura, W. Gierlikowski, and U. Demkow. 2021. Phagocytosis, degranulation and extracellular traps release by neutrophils-the current knowledge, pharmacological modulation and future prospects. Front Pharmacol 12: 666732.
    50. Lacy, P. 2006. Mechanisms of degranulation in neutrophils. Allergy Asthma Clin Immunol 2: 98-108.
    51. Brinkmann, V., U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann, D. S. Weiss, Y. Weinrauch, and A. Zychlinsky. 2004. Neutrophil extracellular traps kill bacteria. Science 303: 1532-1535.
    52. Tyrkalska, S. D., S. Candel, and V. Mulero. 2021. The neutrophil inflammasome. Dev Comp Immunol 115: 103874.
    53. Broz, P., and V. M. Dixit. 2016. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16: 407-420.
    54. Accogli, T., C. Hibos, and F. Vegran. 2023. Canonical and non-canonical functions of NLRP3. J Adv Res 6: 36.
    55. Zheng, D., T. Liwinski, and E. Elinav. 2020. Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discov 6: 36.
    56. Bergsbaken, T., S. L. Fink, and B. T. Cookson. 2009. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7: 99-109.
    57. Downs, K. P., H. Nguyen, A. Dorfleutner, and C. Stehlik. 2020. An overview of the non-canonical inflammasome. Mol Aspects Med 76: 100924.
    58. Paget, C., E. Doz-Deblauwe, N. Winter, and B. Briard. 2022. Specific NLRP3 inflammasome assembling and regulation in neutrophils: relevance in inflammatory and infectious diseases. Cells 11: 1188.
    59. Sollberger, G. 2022. Approaching neutrophil pyroptosis. J Mol Biol 434: 167335.
    60. Tourneur, L., and V. Witko-Sarsat. 2019. Inflammasome activation: Neutrophils go their own way. J Leukoc Biol 105: 433-436.
    61. Bakele, M., M. Joos, S. Burdi, N. Allgaier, S. Poschel, B. Fehrenbacher, M. Schaller, V. Marcos, J. Kummerle-Deschner, N. Rieber, N. Borregaard, A. Yazdi, A. Hector, and D. Hartl. 2014. Localization and functionality of the inflammasome in neutrophils. J Biol Chem 289: 5320-5329.
    62. Mankan, A. K., T. Dau, D. Jenne, and V. Hornung. 2012. The NLRP3/ASC/Caspase-1 axis regulates IL-1beta processing in neutrophils. Eur J Immunol 42: 710-715.
    63. Sokolovska, A., C. E. Becker, W. K. Ip, V. A. Rathinam, M. Brudner, N. Paquette, A. Tanne, S. K. Vanaja, K. J. Moore, K. A. Fitzgerald, A. Lacy-Hulbert, and L. M. Stuart. 2013. Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function. Nat Immunol 14: 543-553.
    64. Yow, S. J., H. W. Yeap, and K. W. Chen. 2022. Inflammasome and gasdermin signaling in neutrophils. Mol Microbiol 117: 961-972.
    65. He, Y., H. Hara, and G. Nunez. 2016. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 41: 1012-1021.
    66. Hou, F., L. Peng, J. Jiang, T. Chen, D. Xu, Q. Huang, C. Ye, Y. Peng, D. L. Hu, and R. Fang. 2021. ATP facilitates staphylococcal enterotoxin o induced neutrophil IL-1beta secretion via NLRP3 inflammasome dependent pathways. Front Immunol 12: 649235.
    67. Cho, J. S., Y. Guo, R. I. Ramos, F. Hebroni, S. B. Plaisier, C. Xuan, J. L. Granick, H. Matsushima, A. Takashima, Y. Iwakura, A. L. Cheung, G. Cheng, D. J. Lee, S. I. Simon, and L. S. Miller. 2012. Neutrophil-derived IL-1beta is sufficient for abscess formation in immunity against Staphylococcus aureus in mice. PLoS Pathog 8: e1003047.
    68. Pires, S., and D. Parker. 2018. IL-1beta activation in response to Staphylococcus aureus lung infection requires inflammasome-dependent and independent mechanisms. Eur J Immunol 48: 1707-1716.
    69. Sutterwala, F. S., S. Haasken, and S. L. Cassel. 2014. Mechanism of NLRP3 inflammasome activation. Ann N Y Acad Sci 1319: 82-95.
    70. Yang, Y., H. Wang, M. Kouadir, H. Song, and F. Shi. 2019. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis 10: 128.
    71. Paik, S., J. K. Kim, P. Silwal, C. Sasakawa, and E. K. Jo. 2021. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol 18: 1141-1160.
    72. Burdette, B. E., A. N. Esparza, H. Zhu, and S. Wang. 2021. Gasdermin D in pyroptosis. Acta Pharm Sin B 11: 2768-2782.
    73. Oh, C., L. Li, A. Verma, A. D. Reuven, E. A. Miao, J. B. Bliska, and Y. Aachoui. 2022. Neutrophil inflammasomes sense the subcellular delivery route of translocated bacterial effectors and toxins. Cell Rep 41: 111688.
    74. Block, H., J. Rossaint, and A. Zarbock. 2022. The fatal circle of NETs and NET-associated DAMPs contributing to organ dysfunction. Cells 11: 1919.
    75. Monteith, A. J., J. M. Miller, W. N. Beavers, K. N. Maloney, E. L. Seifert, G. Hajnoczky, and E. P. Skaar. 2022. Mitochondrial calcium uniporter affects neutrophil bactericidal activity during Staphylococcus aureus infection. Infect Immun 90: e0055121.
    76. Monteith, A. J., J. M. Miller, C. N. Maxwell, W. J. Chazin, and E. P. Skaar. 2021. Neutrophil extracellular traps enhance macrophage killing of bacterial pathogens. Sci Adv 7: eabj2101.
    77. Vorobjeva, N. V. 2020. Neutrophil extracellular traps: new aspects. Moscow Univ Biol Sci Bull 75: 173-188.
    78. Sollberger, G., A. Choidas, G. L. Burn, P. Habenberger, R. Di Lucrezia, S. Kordes, S. Menninger, J. Eickhoff, P. Nussbaumer, B. Klebl, R. Kruger, A. Herzig, and A. Zychlinsky. 2018. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci Immunol 3: eaar6689.
    79. Chen, K. W., M. Monteleone, D. Boucher, G. Sollberger, D. Ramnath, N. D. Condon, J. B. von Pein, P. Broz, M. J. Sweet, and K. Schroder. 2018. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci Immunol 3: eaar6676.
    80. Yang, H., M. H. Biermann, J. M. Brauner, Y. Liu, Y. Zhao, and M. Herrmann. 2016. New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation. Front Immunol 7: 302.
    81. Papayannopoulos, V., K. D. Metzler, A. Hakkim, and A. Zychlinsky. 2010. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191: 677-691.
    82. Brinkmann, V., and A. Zychlinsky. 2012. Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol 198: 773-783.
    83. Wang, Y., M. Li, S. Stadler, S. Correll, P. Li, D. Wang, R. Hayama, L. Leonelli, H. Han, S. A. Grigoryev, C. D. Allis, and S. A. Coonrod. 2009. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 184: 205-213.
    84. Li, P., M. Li, M. R. Lindberg, M. J. Kennett, N. Xiong, and Y. Wang. 2010. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 207: 1853-1862.
    85. Li, M., C. Lin, A. Leso, and Y. Nefedova. 2020. Quantification of citrullinated histone h3 bound dna for detection of neutrophil extracellular traps. Cancers (Basel) 12: 3424.
    86. He, C., S. Xu, H. Zhao, F. Hu, X. Xu, S. Jin, H. Yang, F. Gong, and Q. Liu. 2018. Leukotoxin and pyrogenic toxin Superantigen gene backgrounds in bloodstream and wound Staphylococcus aureus isolates from eastern region of China. BMC Infect Dis 18: 395.
    87. Oh, H., B. Siano, and S. Diamond. 2008. Neutrophil isolation protocol. J Vis Exp 17: 745.
    88. Missiakas, D. M., and O. Schneewind. 2013. Growth and laboratory maintenance of Staphylococcus aureus. Curr Protoc Microbiol Chapter 9: Unit 9C 1.
    89. Lindqvist, R. 2006. Estimation of Staphylococcus aureus growth parameters from turbidity data: characterization of strain variation and comparison of methods. Appl Environ Microbiol 72: 4862-4870.
    90. Schneewind, O., and D. Missiakas. 2014. Genetic manipulation of Staphylococcus aureus. Curr Protoc Microbiol 32: Unit 9C 3.
    91. Froger, A., and J. E. Hall. 2007. Transformation of plasmid DNA into E. coli using the heat shock method. J Vis Exp 6: 253.
    92. Bae, T., and O. Schneewind. 2006. Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid 55: 58-63.
    93. von Kockritz-Blickwede, M., and V. Winstel. 2022. Molecular prerequisites for neutrophil extracellular trap formation and evasion mechanisms of Staphylococcus aureus. Front Immunol 13: 836278.
    94. Carmona-Rivera, C., and M. J. Kaplan. 2016. Induction and quantification of NETosis. Curr Protoc Immunol 115: 144111-144114.
    95. Balasubramanian, D., E. A. Ohneck, J. Chapman, A. Weiss, M. K. Kim, T. Reyes-Robles, J. Zhong, L. N. Shaw, D. S. Lun, B. Ueberheide, B. Shopsin, and V. J. Torres. 2016. Staphylococcus aureus coordinates leukocidin expression and pathogenesis by sensing metabolic fluxes via RpiRc. mBio 7: 00818-00916.
    96. Kremserova, S., and W. M. Nauseef. 2019. Frontline Science: Staphylococcus aureus promotes receptor-interacting protein kinase 3- and protease-dependent production of IL-1beta in human neutrophils. J Leukoc Biol 105: 437-447.
    97. Adrover, J. M., L. Carrau, J. Dassler-Plenker, Y. Bram, V. Chandar, S. Houghton, D. Redmond, J. R. Merrill, M. Shevik, B. R. tenOever, S. K. Lyons, R. E. Schwartz, and M. Egeblad. 2022. Disulfiram inhibits neutrophil extracellular trap formation and protects rodents from acute lung injury and SARS-CoV-2 infection. JCI Insight 7: 157342.
    98. Hu, J. J., X. Liu, S. Xia, Z. Zhang, Y. Zhang, J. Zhao, J. Ruan, X. Luo, X. Lou, Y. Bai, J. Wang, L. R. Hollingsworth, V. G. Magupalli, L. Zhao, H. R. Luo, J. Kim, J. Lieberman, and H. Wu. 2020. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol 21: 736-745.
    99. Chen, K. W., C. J. Gross, F. V. Sotomayor, K. J. Stacey, J. Tschopp, M. J. Sweet, and K. Schroder. 2014. The neutrophil NLRC4 inflammasome selectively promotes IL-1beta maturation without pyroptosis during acute Salmonella challenge. Cell Rep 8: 570-582.
    100. Duprez, L., E. Wirawan, T. Vanden Berghe, and P. Vandenabeele. 2009. Major cell death pathways at a glance. Microbes Infect 11: 1050-1062.
    101. Vanden Berghe, T., N. Vanlangenakker, E. Parthoens, W. Deckers, M. Devos, N. Festjens, C. J. Guerin, U. T. Brunk, W. Declercq, and P. Vandenabeele. 2010. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 17: 922-930.
    102. Saraste, A., and K. Pulkki. 2000. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 45: 528-537.
    103. Chen, X., W. T. He, L. Hu, J. Li, Y. Fang, X. Wang, X. Xu, Z. Wang, K. Huang, and J. Han. 2016. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res 26: 1007-1020.
    104. Zheng, X., G. Marsman, K. A. Lacey, J. R. Chapman, C. Goosmann, B. M. Ueberheide, and V. J. Torres. 2021. The cell envelope of Staphylococcus aureus selectively controls the sorting of virulence factors. Nat Commun 12: 6193.
    105. Los, F. C., T. M. Randis, R. V. Aroian, and A. J. Ratner. 2013. Role of pore-forming toxins in bacterial infectious diseases. Microbiol Mol Biol Rev 77: 173-207.
    106. Gonzalez, M. R., M. Bischofberger, L. Pernot, F. G. van der Goot, and B. Freche. 2008. Bacterial pore-forming toxins: the (w)hole story? Cell Mol Life Sci 65: 493-507.
    107. Dal Peraro, M., and F. G. van der Goot. 2016. Pore-forming toxins: ancient, but never really out of fashion. Nat Rev Microbiol 14: 77-92.
    108. Hu, H., M. Liu, and S. Sun. 2021. Pore-forming toxins during bacterial infection: molecular mechanisms and potential therapeutic targets. Drug Des Devel Ther 15: 3773-3781.
    109. Thapa, R., S. Ray, and P. A. Keyel. 2020. Interaction of macrophages and cholesterol-dependent cytolysins: The impact on immune response and cellular survival. Toxins (Basel) 12.
    110. Tweten, R. K. 2005. Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect Immun 73: 6199-6209.
    111. Sannigrahi, A., and K. Chattopadhyay. 2022. Pore formation by pore forming membrane proteins towards infections. Adv Protein Chem Struct Biol 128: 79-111.
    112. Chu, J., L. M. Thomas, S. C. Watkins, L. Franchi, G. Nunez, and R. D. Salter. 2009. Cholesterol-dependent cytolysins induce rapid release of mature IL-1beta from murine macrophages in a NLRP3 inflammasome and cathepsin B-dependent manner. J Leukoc Biol 86: 1227-1238.
    113. McNeela, E. A., A. Burke, D. R. Neill, C. Baxter, V. E. Fernandes, D. Ferreira, S. Smeaton, R. El-Rachkidy, R. M. McLoughlin, A. Mori, B. Moran, K. A. Fitzgerald, J. Tschopp, V. Petrilli, P. W. Andrew, A. Kadioglu, and E. C. Lavelle. 2010. Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLoS Pathog 6: e1001191.
    114. Walmrath, D., H. A. Ghofrani, S. Rosseau, H. Schutte, A. Cramer, W. Kaddus, F. Grimminger, S. Bhakdi, and W. Seeger. 1994. Endotoxin "priming" potentiates lung vascular abnormalities in response to Escherichia coli hemolysin: an example of synergism between endo- and exotoxin. J Exp Med 180: 1437-1443.
    115. Kumar, A., P. K. Singh, Z. Ahmed, S. Singh, and A. Kumar. 2022. Essential role of NLRP3 inflammasome in mediating IL-1beta production and the pathobiology of Staphylococcus aureus endophthalmitis. Infect Immun 90: e0010322.
    116. Melehani, J. H., and J. A. Duncan. 2016. Inflammasome activation can mediate tissue-specific pathogenesis or protection in Staphylococcus aureus infection. Curr Top Microbiol Immunol 397: 257-282.
    117. Amarante-Mendes, G. P., S. Adjemian, L. M. Branco, L. C. Zanetti, R. Weinlich, and K. R. Bortoluci. 2018. Pattern recognition receptors and the host cell death molecular machinery. Front Immunol 9: 2379.
    118. Arango Duque, G., and A. Descoteaux. 2014. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5: 491.
    119. Chan, A. H., and K. Schroder. 2020. Inflammasome signaling and regulation of interleukin-1 family cytokines. J Exp Med 217.
    120. Kobayashi, S. D., and F. R. DeLeo. 2009. Role of neutrophils in innate immunity: a systems biology-level approach. Wiley Interdiscip Rev Syst Biol Med 1: 309-333.
    121. Butterfield, T. A., T. M. Best, and M. A. Merrick. 2006. The dual roles of neutrophils and macrophages in inflammation: a critical balance between tissue damage and repair. J Athl Train 41: 457-465.
    122. Pittman, K., and P. Kubes. 2013. Damage-associated molecular patterns control neutrophil recruitment. J Innate Immun 5: 315-323.
    123. Son, S., S. H. Yoon, B. J. Chae, I. Hwang, D. W. Shim, Y. H. Choe, Y. M. Hyun, and J. W. Yu. 2021. Neutrophils facilitate prolonged inflammasome response in the DAMP-rich inflammatory milieu. Front Immunol 12: 746032.
    124. Tang, D., R. Kang, C. B. Coyne, H. J. Zeh, and M. T. Lotze. 2012. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 249: 158-175.
    125. van de Veerdonk, F. L., S. P. Smeekens, L. A. Joosten, B. J. Kullberg, C. A. Dinarello, J. W. van der Meer, and M. G. Netea. 2010. Reactive oxygen species-independent activation of the IL-1beta inflammasome in cells from patients with chronic granulomatous disease. Proc Natl Acad Sci U S A 107: 3030-3033.
    126. Bauernfeind, F., E. Bartok, A. Rieger, L. Franchi, G. Nunez, and V. Hornung. 2011. Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J Immunol 187: 613-617.
    127. Karmakar, M., M. Katsnelson, H. A. Malak, N. G. Greene, S. J. Howell, A. G. Hise, A. Camilli, A. Kadioglu, G. R. Dubyak, and E. Pearlman. 2015. Neutrophil IL-1beta processing induced by pneumolysin is mediated by the NLRP3/ASC inflammasome and caspase-1 activation and is dependent on K+ efflux. J Immunol 194: 1763-1775.
    128. Kovacs, S. B., C. Oh, V. I. Maltez, B. D. McGlaughon, A. Verma, E. A. Miao, and Y. Aachoui. 2020. Neutrophil caspase-11 is essential to defend against a cytosol-invasive bacterium. Cell Rep 32: 107967.
    129. Taniguchi, S., and J. Sagara. 2007. Regulatory molecules involved in inflammasome formation with special reference to a key mediator protein, ASC. Semin Immunopathol 29: 231-238.
    130. Chen, K. W., K. E. Lawlor, J. B. von Pein, D. Boucher, M. Gerlic, B. A. Croker, J. S. Bezbradica, J. E. Vince, and K. Schroder. 2018. Cutting edge: blockade of inhibitor of apoptosis proteins sensitizes neutrophils to TNF- but not lipopolysaccharide-mediated cell death and IL-1beta secretion. J Immunol 200: 3341-3346.
    131. Heilig, R., M. S. Dick, L. Sborgi, E. Meunier, S. Hiller, and P. Broz. 2018. The Gasdermin-D pore acts as a conduit for IL-1beta secretion in mice. Eur J Immunol 48: 584-592.
    132. Karmakar, M., M. Minns, E. N. Greenberg, J. Diaz-Aponte, K. Pestonjamasp, J. L. Johnson, J. K. Rathkey, D. W. Abbott, K. Wang, F. Shao, S. D. Catz, G. R. Dubyak, and E. Pearlman. 2020. N-GSDMD trafficking to neutrophil organelles facilitates IL-1beta release independently of plasma membrane pores and pyroptosis. Nat Commun 11: 2212.
    133. Vorobjeva, N. V., and B. V. Chernyak. 2020. NETosis: Molecular mechanisms, role in physiology and pathology. Biochemistry (Mosc) 85: 1178-1190.
    134. Metzler, K. D., C. Goosmann, A. Lubojemska, A. Zychlinsky, and V. Papayannopoulos. 2014. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep 8: 883-896.
    135. Mazzoleni, V., K. Zimmermann, A. Smirnova, I. Tarassov, and G. Prevost. 2021. Staphylococcus aureus Panton-Valentine Leukocidin triggers an alternative NETosis process targeting mitochondria. FASEB J 35: e21167.
    136. Hoppenbrouwers, T., A. R. Sultan, T. E. Abraham, N. A. Lemmens-den Toom, S. Hansenova Manaskova, W. A. van Cappellen, A. B. Houtsmuller, W. J. B. van Wamel, M. P. M. de Maat, and J. W. van Neck. 2018. Staphylococcal protein a is a key factor in neutrophil extracellular traps formation. Front Immunol 9: 165.
    137. Munoz-Planillo, R., P. Kuffa, G. Martinez-Colon, B. L. Smith, T. M. Rajendiran, and G. Nunez. 2013. K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38: 1142-1153.
    138. Haslinger-Loffler, B., B. C. Kahl, M. Grundmeier, K. Strangfeld, B. Wagner, U. Fischer, A. L. Cheung, G. Peters, K. Schulze-Osthoff, and B. Sinha. 2005. Multiple virulence factors are required for Staphylococcus aureus-induced apoptosis in endothelial cells. Cell Microbiol 7: 1087-1097.
    139. Menzies, B. E., and I. Kourteva. 2000. Staphylococcus aureus alpha-toxin induces apoptosis in endothelial cells. FEMS Immunol Med Microbiol 29: 39-45.
    140. Genestier, A. L., M. C. Michallet, G. Prevost, G. Bellot, L. Chalabreysse, S. Peyrol, F. Thivolet, J. Etienne, G. Lina, F. M. Vallette, F. Vandenesch, and L. Genestier. 2005. Staphylococcus aureus Panton-Valentine leukocidin directly targets mitochondria and induces Bax-independent apoptosis of human neutrophils. J Clin Invest 115: 3117-3127.
    141. Sauer, J. D., C. E. Witte, J. Zemansky, B. Hanson, P. Lauer, and D. A. Portnoy. 2010. Listeria monocytogenes triggers AIM2-mediated pyroptosis upon infrequent bacteriolysis in the macrophage cytosol. Cell Host Microbe 7: 412-419.
    142. Tanishita, Y., H. Sekiya, N. Inohara, K. Tsuchiya, M. Mitsuyama, G. Nunez, and H. Hara. 2022. Listeria toxin promotes phosphorylation of the inflammasome adaptor ASC through Lyn and Syk to exacerbate pathogen expansion. Cell Rep 38: 110414.
    143. Zhang, J. M., and J. An. 2007. Cytokines, inflammation, and pain. Int Anesthesiol Clin 45: 27-37.
    144. Schultz, B. M., O. A. Acevedo, A. M. Kalergis, and S. M. Bueno. 2022. Role of extracellular trap release during bacterial and viral infection. Front Microbiol 13: 798853.
    145. Kaplan, M. J., and M. Radic. 2012. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol 189: 2689-2695.
    146. Keshari, R. S., A. Jyoti, M. Dubey, N. Kothari, M. Kohli, J. Bogra, M. K. Barthwal, and M. Dikshit. 2012. Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition. PLoS One 7: e48111.
    147. Liu, G., C. Jiang, X. Lin, and Y. Yang. 2021. Point-of-care detection of cytokines in cytokine storm management and beyond: Significance and challenges. View (Beijing) 2: 20210003.
    148. Shimabukuro-Vornhagen, A., P. Godel, M. Subklewe, H. J. Stemmler, H. A. Schlosser, M. Schlaak, M. Kochanek, B. Boll, and M. S. von Bergwelt-Baildon. 2018. Cytokine release syndrome. J Immunother Cancer 6: 56.
    149. Tang, X. D., T. T. Ji, J. R. Dong, H. Feng, F. Q. Chen, X. Chen, H. Y. Zhao, D. K. Chen, and W. T. Ma. 2021. Pathogenesis and treatment of cytokine storm induced by infectious diseases. Int J Mol Sci 22.
    150. Chousterman, B. G., F. K. Swirski, and G. F. Weber. 2017. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol 39: 517-528.
    151. Fajgenbaum, D. C., and C. H. June. 2020. Cytokine Storm. N Engl J Med 383: 2255-2273.
    152. Wang, H., and S. Ma. 2008. The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome. Am J Emerg Med 26: 711-715.
    153. Chakraborty, R. K., and B. Burns. 2023. Systemic inflammatory response syndrome. In StatPearls, Treasure Island (FL).
    154. Marshall, J. C. 2001. Inflammation, coagulopathy, and the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med 29: S99-106.
    155. Poli, V., M. Di Gioia, M. Sola-Visner, F. Granucci, A. L. Frelinger, 3rd, A. D. Michelson, and I. Zanoni. 2022. Inhibition of transcription factor NFAT activity in activated platelets enhances their aggregation and exacerbates gram-negative bacterial septicemia. Immunity 55: 224-236 e225.
    156. Gupta, A. K., M. B. Joshi, M. Philippova, P. Erne, P. Hasler, S. Hahn, and T. J. Resink. 2010. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett 584: 3193-3197.
    157. Fuchs, T. A., A. Brill, D. Duerschmied, D. Schatzberg, M. Monestier, D. D. Myers, Jr., S. K. Wrobleski, T. W. Wakefield, J. H. Hartwig, and D. D. Wagner. 2010. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 107: 15880-15885.
    158. Badarau, A., H. Rouha, S. Malafa, M. B. Battles, L. Walker, N. Nielson, I. Dolezilkova, A. Teubenbacher, S. Banerjee, B. Maierhofer, S. Weber, L. Stulik, D. T. Logan, M. Welin, I. Mirkina, C. Pleban, G. Zauner, K. Gross, M. Jagerhofer, Z. Magyarics, and E. Nagy. 2016. Context matters: The importance of dimerization-induced conformation of the LukGH leukocidin of Staphylococcus aureus for the generation of neutralizing antibodies. MAbs 8: 1347-1360.
    159. Thomsen, I. P., G. Sapparapu, D. B. A. James, J. E. Cassat, M. Nagarsheth, N. Kose, N. Putnam, K. M. Boguslawski, L. S. Jones, J. B. Wood, C. B. Creech, V. J. Torres, and J. E. Crowe, Jr. 2017. Monoclonal antibodies against the Staphylococcus aureus bicomponent Leukotoxin AB isolated following invasive human infection reveal diverse binding and modes of action. J Infect Dis 215: 1124-1131.
    160. Wood, J. B., L. S. Jones, N. R. Soper, M. Nagarsheth, C. B. Creech, and I. P. Thomsen. 2017. Commercial intravenous immunoglobulin preparations contain functional neutralizing antibodies against the Staphylococcus aureus Leukocidin LukAB (LukGH). Antimicrob Agents Chemother 61: e00968-01017.
    161. Kailasan, S., T. Kort, I. Mukherjee, G. C. Liao, T. Kanipakala, N. Williston, N. Ganjbaksh, A. Venkatasubramaniam, F. W. Holtsberg, H. Karauzum, R. P. Adhikari, and M. J. Aman. 2019. Rational design of toxoid vaccine candidates for Staphylococcus aureus Leukocidin AB (LukAB). Toxins (Basel) 11: 339.
    162. Thomsen, I., and C. B. Creech. 2011. Advances in the diagnosis and management of pediatric osteomyelitis. Curr Infect Dis Rep 13: 451-460.
    163. Gafur, O. A., L. A. Copley, S. T. Hollmig, R. H. Browne, L. A. Thornton, and S. E. Crawford. 2008. The impact of the current epidemiology of pediatric musculoskeletal infection on evaluation and treatment guidelines. J Pediatr Orthop 28: 777-785.
    164. Wood, J. B., L. S. Jones, N. R. Soper, M. Xu, V. J. Torres, C. Buddy Creech, and I. P. Thomsen. 2019. Serologic detection of antibodies targeting the Leukocidin LukAB strongly predicts Staphylococcus aureus in children with invasive infection. J Pediatric Infect Dis Soc 8: 128-135.
    165. Fernandez, J., H. Sanders, J. Henn, J. M. Wilson, D. Malone, A. Buoninfante, M. Willms, R. Chan, A. L. DuMont, C. McLahan, K. Grubb, A. Romanello, G. van den Dobbelsteen, V. J. Torres, and J. T. Poolman. 2022. Vaccination with detoxified Leukocidin AB reduces bacterial load in a Staphylococcus aureus minipig deep surgical wound infection model. J Infect Dis 225: 1460-1470.
    166. Perelman, S. S., D. B. A. James, K. M. Boguslawski, C. W. Nelson, J. K. Ilmain, E. E. Zwack, R. A. Prescott, A. Mohamed, K. Tam, R. Chan, A. Narechania, M. B. Pawline, N. Vozhilla, A. M. Moustafa, S. Y. Kim, M. Dittmann, D. C. Ekiert, G. Bhabha, B. Shopsin, P. J. Planet, S. B. Koralov, and V. J. Torres. 2021. Genetic variation of staphylococcal LukAB toxin determines receptor tropism. Nat Microbiol 6: 731-745.

    無法下載圖示 校內:2028-08-24公開
    校外:2028-08-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE