簡易檢索 / 詳目顯示

研究生: 侯水欽
Hou, Shui-Ching
論文名稱: 添加氮及碘分子雙摻雜系統的有機發光元件之研究
Fabrication and Characterization of Organic Light-Emitting Diodes with Nitrogen and Iodine Dual Dopants System
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 70
中文關鍵詞: 雙摻雜有機發光元件
外文關鍵詞: OLED, dual dopants system, doping I2
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係探討在成長雙層結構有機發光元件時,於有機層中摻雜入不同壓力的氮氣及不同重量比的碘來改善元件的發光特性。由實驗結果中,我們發現無論是氮抑或是碘的無機分子摻雜皆有不錯的特性。其中,操作電壓和輸出亮度皆因摻雜氮碘分子之干擾作用而有所改善。然而,在需更高輸出亮度時,添加氮或碘分子的單摻雜系統卻因干擾作用的飽和而有所侷限,故也限制住元件特性的進一步發展。

    因此,吾人也嘗試著將氮及碘兩種分子共摻雜到有機元件中而形成雙摻雜系統,並且發現到雙摻雜系統確能突破單摻雜系統干擾作用飽和的限制,進而有更佳的光電特性。於本論文中吾人並提出一個模式來解釋其改善的機制。

    In this thesis, we report the study of improving the photoelectric characteristics of bi-layer organic light-emitting diodes (OLEDs) by introducing N2 gas into evaporation chamber to co-deposit with different organic layers and incorporating I2 with various weight ratio into OLEDs in the same way. Experimental results show that the OLEDs with inorganic nitrogen or iodine can achieve smaller operating voltage and higher luminance due to the interfere action of guest hopping traps, caused by the dopants to the host hopping traps. However, these single dopant systems (doping N2 or I2) can’t apply for advanced high luminescence OLEDs due to the saturation of the interfere function between the guest and host hopping traps.

    Therefore, incorporation of both N2 and I2 to form “Dual Dopants System” was developed and focus the dual dopants system can improve the performance better than single dopant system. A comprehensive model has been proposed to explain the improvement mechanism

    Abstract (in Chinese)…………………………………………I Abstract (in English) ………………………………………II Content……………………………………………………… III Figure Captions…………………………………………… VI Chapter 1 Introduction …………………………………………………………1 Chapter 2 Principle of OLED……………………………………………………6 2-1 The Mechanism of OLEDs……………………………………………………6 2-1-1 Electrical characteristics of OLEDs ……………………………6 2-1-2 Electroluminescence of the OLEDs…………………………………9 2-2 Various structures of OLEDs……………………………………………10 2-3 Factors of effects on performance of OLED…………………………12 2-4 Efficiency calculations…………………………………………………13 Chapter 3 Experimental Procedures …………………………………………15 3-1 Experimental preparation ………………………………………………15 3-1-1 Substrate cleaning …………………………………………………15 3-1-2 Substrate etching process…………………………………………16 3-2 Growth system and procedures …………………………………………16 3-2-1 Deposition systems …………………………………………………16 3-2-2 Materials………………………………………………………………17 3-2-3 Deposition of thin films …………………………………………18 3-3 Measurements ………………………………………………………………19 3-3-1 Electrical characteristics ………………………………………19 3-3-2 Optical characteristics……………………………………………20 Chapter 4 Result and Discussion ……………………………………………21 4-1 Electron transport layer (Alq3) with nitrogen incorporation…21 4-1-1 Electrical characteristics ………………………………………21 4-1-2 OLED performances with nitrogen incorporation in ETL ……22 4-2 Hole transport layer (TPD) with nitrogen incorporation ………24 4-2-1 Electrical characteristics ………………………………………24 4-2-2 OLED performances……………………………………………………25 4-3 Nitrogen incorporation in both ETL and HTL ………………………25 4-3-1 Electrical characteristics and OLED performances …………25 4-4 Electron transport layer (Alq3) with iodine incorporation……26 4-4-1 Electrical characteristics ………………………………………26 4-4-2 OLED performances with iodine incorporation in ETL ………27 4-5 Hole transport layer (TPD) with iodine incorporation ………28 4-5-1 Electrical characteristics ………………………………………28 4-5-2 OLED performances……………………………………………………29 4-6 Iodine incorporation in both ETL and HTL …………………………29 4-6-1 Electrical characteristics and OLED performances …………29 4-7 Dual dopants system with nitrogen and iodine ……………………30 4-7-1 Electrical characteristics and OLED performances …………30 4-7-2 Measurements of PL and EL…………………………………………30 Chapter 5 Conclusion……………………………………………………………32 Reference………………………………………………………… 34 Figfures…………………………………………………………37

    [1] M. Pope, H. P. Kallmann, and P. Magnante, “Electrolumi nescence in organic crystal ”, J. Chem. Phys., vol.38, pp.2042, 1963

    [2] C. W. Tang, and S. A. Vanslyke, “Organic electroluminescent diodes”, Appl. Phys. Lett., vol.51, pp.913, 1987

    [3] J. H. Burroughes, D. C. Bradley, and A. R. Brown, “Light-Emitting Diodes Based on Conjugated Polymers”, Nature, vol.347, pp.539, 1990

    [4] P. E. Burrows, and Z. Shen, “Relation between electroluminescence and current transport in organic heterojunction light-emitting devices”, J. Appl. Phys., vol.79, pp.7991, 1996

    [5] W. Brutting, S. Berleb, and A. G. Muckl, “ Device physics of organic light-emitting diodes based on molecular materials”, Organic Electronics, vol.2, ppl1, 2001

    [6] F. Steuber, “Reduced operating voltage of organic electroluminescent devices by plasma treatment of the indium tin oxide anode”, Appl. Phys. Lett., vol.74, pp.3558, 1999

    [7] C. Ganzorig, “Improved drive voltage of organic electroluminescent devices with an efficient p-type aromatic diamine hole-injection layer”, Appl. Phys. Lett., vol.77, pp.4211, 2000

    [8] A. S. Andrei, Y. Yujian, and E. T. Mark, “Electroluminescence Color Tuning by Dye Doping in Organic Light-Emitting Diodes”, IEEE Journal of Selected Topics in Quantum Electronics, vol.4.pp.3, 1998

    [9] H. Aziz, “Humidity-induced crystallization of tris (8-hydroxyquinoline) aluminum layers in organic light emitting devices”, Appl. Phys. Lett., vol.72, pp.756,1998

    [10] P. E. Burrows, “Reliability and degradation of organic light emitting devices”, Appl. Phys. Lett., vol.65, pp.2922, 1994

    [11] B. Chen, C. S. Lee, and S. T. Lee, “Improved time-of –flight technique for measuring carrier mobility in thin films of organic electroluminescent materials”, Jpn. J. Appl. Phys., vol.39, ppl1190, 2000

    [12] H. H. Friend, R. W. Gymer, A. B. Holmes, and J. H. Burroughes et al., ”Electroluminescence in conjugated polymers”, Nature, vol.397, pp.121, 1999

    [13] C. F. Qiu, and H. Chen, “Dependence of the Current and Power Efficiencies of Organic Light-Emitting Diode on the Thickness of the Constituent Organic layers”, IEEE Trans. Electron Devices, vol.48, pp.2131, 2001

    [14] W. J. Lee, Y. K. Fang, and H. C. Chiang, “Dramatic improving luminous efficiency of organic light emitting diodes under low driving current using nitrogen doped hole transporter”, Solid-State Electronics, vol.47, pp.1127, 2003

    [15] W. O. Groves, “The Effect of Nitrogen Doping on GaAsP Electroluminescent Diodes”, Appl. Phys. Lett., vol.19, pp.184, 1971

    [16] F. Huang, A. G. MacDiarmid, and B. R. Hsieh, “An iodine-doped polymer light-emitting diode”, Appl. Phys. Lett., vol.71, pp.2415, 1997

    [17] D. M. Pai, J. F. Yanus, and M. Stolka, “Trap-Controlled Hopping Transport”, J. Phys. Chem., vol.88, pp.4714, 1984

    [18] S. Miyata, and H. S. Nalwa, “Organic Electroluminescent Materials and Devices”, Gordon and Breach Science Publishers, Netherlands, pp.335, 1997

    [19] The Nobel Prize in Chemistry 2000- Information for the Public
    (http://www.nobel.se/chemistry/laureates/2000/public.html)

    [20] H. Y. Ralph, W. T. Ching, and P. M. Alfred, “Current-induced fluorescence quenching in organic light-emitting diodes”, Appl. Phys. Lett., vol.80, pp.874, 2002

    [21] Y. Hamada, H. Kanno, and T. Tsujioka, “Red organic light-emitting diodes using an emitting assist dopant”, Appl. Phys. Lett., vol.75, pp.1682, 1999

    下載圖示 校內:2005-07-06公開
    校外:2007-07-06公開
    QR CODE