| 研究生: |
林欣平 Lin, Hsin-Ping |
|---|---|
| 論文名稱: |
Ni-Al金屬玻璃薄膜阻障層與多晶銅間機械性質與擴散行為之分子動力學模擬 Molecular Dynamics Simulation of Mechanical Properties and Diffusion Behavior between Ni-Al Thin-film Metallic Glass Barrier and Polycrystalline Copper |
| 指導教授: |
陳鐵城
Chen, Tei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | Ni-Al金屬玻璃 、擴散阻障層 、原子擴散行為 、分子動力學模擬 |
| 外文關鍵詞: | Ni-Al Metallic Glass, Diffusion Barrier, Atomic Diffusion Behavior, Molecular Dynamics |
| 相關次數: | 點閱:100 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討Ni-Al金屬玻璃薄膜作為銅金屬與錫金屬之間擴散阻障層的相關機械性質與擴散行為,使用分子動力學方法搭配Finnis-Sinclair勢能函數針對Ni-Al薄膜與多晶銅金屬所構成之Cu/Ni-Al阻障層雙層結構系統在不同條件之下如Ni-Al製備冷卻速率、合金比例以及系統溫度等進行單軸拉伸、剪切試驗以及定溫擴散模擬,藉以分析其各項材料性質,亦透過共同近鄰原子分析(CNA)與鍵對分析(HA指數)等方法研究Ni-Al阻障層之結構型態。本研究之拉伸與剪切試驗模擬結果顯示隨著Ni-Al冷卻速率增加,雙層結構系統的強度會有下降的趨勢,其主要變形區域由多晶銅轉移至Ni-Al阻障層內,變形機制亦從多晶銅晶界與疊差結構之滑移轉變為Ni-Al內部平均分布之微小應變區域,且變形行為較偏向於延性。針對合金比例的部分,當Ni-Al金屬玻璃之Ni原子比例增加時強度則有所提升。藉由在不同溫度與拉伸、剪切負載速率下之模擬可發現Cu/Ni-Al雙層結構在較高溫度之下會有流動軟化的情形而導致強度下降且延性增加,在較高負載速率下強度則會提升。擴散模擬的結果顯示在相同溫度之下,大致上Ni-Al冷卻速率越高則雙層結構中銅原子的擴散係數越低,當Ni原子比例增加時銅原子擴散係數亦有下降的趨勢,Ni-Al金屬玻璃抑制銅原子擴散的能力相較於多晶態Ni-Al明顯較佳,為其內部隨冷卻速率上升而大量增加之ISRO短程有序結構所導致。上述相關研究結果可作為在電子裝置封裝中使用Ni-Al金屬玻璃薄膜作為擴散阻障層時之設計依據。
In this work, a heterogeneous bilayer model with lower polycrystalline copper layer and upper Ni-Al thin-film layer was introduced, applying to uniaxial tensile, shear and diffusion tests under various conditions to investigate the mechanical properties and diffusion behavior of Ni-Al thin-film metallic glass that used as a diffusion barrier between copper and tin. Molecular dynamics simulation with Finnis-Sinclair potential was adopted to carry out the whole work. Simulation results indicate that the strength of bilayer systems decrease with increasing Ni-Al cooling rates, main deformation region translates from polycrystalline copper to Ni-Al barrier. Moreover, deformation mechanism switches from propagation of grain boundaries and stacking faults of copper to small strain region accumulation of Ni-Al and ductile-like behavior is observed. For alloy ratio, strength of bilayers increases with higher Ni content of Ni-Al metallic glasses. Strength decreasing due to flow softening phenomenon can be seen from simulations under higher temperatures. Conversely, rising loading rates can induce higher strength. Results of diffusion tests reveal that MSD and diffusion coefficients of Cu atoms reduce with increasing cooling rates and Ni content of Ni-Al. It is evident that the performance of Cu diffusion mitigation of Ni-Al metallic glasses is better than polycrystalline Ni-Al due to high fraction of ISRO structure inside Ni-Al along with cooling rates. Results of this work can be a designing guideline for using Ni-Al thin-film metallic glass as a diffusion barrier in electronic packaging industries.
[1] T. Yasmin, M. Sadiq, and M. I. Khan, "Effect of lanthanum doping on the microstructure evolution and intermetallic compound (IMC) growth during thermal aging of SAC305 solder alloy," Journal of Material Sciences & Engineering, vol. 3, no. 2, p. 1000141, 2014.
[2] W. Diyatmika, J. P. Chu, Y. W. Yen, and C. H. Hsueh, "Sn whisker mitigation by a thin metallic-glass underlayer in Cu-Sn," Applied Physics Letters, vol. 103, p. 241912, 2013.
[3] J. H. Irving and J. G. Kirkwood, "The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics," The Journal of Chemical Physics, vol. 18, no. 6, pp. 817-829, 1950.
[4] B. J. Alder and T. E. Wainwright, "Studies in molecular dynamics. I. General method," The Journal of Chemical Physics, vol. 31, no. 2, pp. 459-466, 1959.
[5] J. B. Gibson, A. N. Goland, M. Milgram, and G. H. Vineyard, "Dynamics of radiation damage," Physical Review, vol. 120, pp. 1229-1253, 1960.
[6] A. Rahman, "Correlations in the motion of atoms in liquid argon," Physical Review, vol. 136, pp. 405-441, 1964.
[7] L. Verlet, "Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules," Physical Review, vol. 159, pp. 98-103, 1967.
[8] R. W. Hockney and J. W. Eastwood, Computer Simulations Using Particles. New York: McGraw-Hill, 1981.
[9] D. J. Auerbach, W. Paul, A. F. Bakker, C. Lutz, W. E. Rudge, and F. F. Abraham, "A special purpose parallel computer for molecular dynamics: motivation, design, implementation, and application," The Journal of Physical Chemistry, vol. 91, pp. 4881-4890, 1987.
[10] G. S. Grest, B. Dünweg, and K. Kremer, "Vectorized link cell Fortran code for molecular dynamics simulations for a large number of particles," Computer Physics Communications, vol. 51, no. 3, pp. 269-285, 1989.
[11] W. Klement, R. H. Willens, and P. Duwez, "Non-crystalline structure in solidified gold–silicon alloys," Nature, vol. 187, pp. 869-870, 1960.
[12] H. S. Chen and D. Turnbull, "Formation, stability and structure of palladium-silicon based alloy glasses," Acta Metallurgica, vol. 17, no. 8, pp. 1021-1031, 1969.
[13] A. Inoue, T. Zhang, and T. Masumoto, "Al–La–Ni amorphous alloys with a wide supercooled liquid region," Materials Transaction, vol. 30, no. 12, pp. 965-972, 1989.
[14] A. Inoue, A. Kato, T. Zhang, S. G. Kim, and T. Masumoto, "Mg–Cu–Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method," Materials Transaction, vol. 32, no. 7, pp. 609-616, 1991.
[15] Y. Qi, T. Çağin, Y. Kimura, and W. A. G. III, "Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals: Cu-Ag and Cu-Ni," Physical Review B, vol. 59, no. 5, pp. 3527-3533, 1999.
[16] G. Duan, D. Xu, Q. Zhang, G. Zhang, T. Çağin, W. L. Johnson, and W. A. Goddard III, "Molecular dynamics study of the binary Cu46Zr54 metallic glass motivated by experiments: Glass formation and atomic-level structure," Physical Review B, vol. 71, no. 22, p. 224208, 2005.
[17] J. Wang, P. D. Hodgson, J. Zhang, W. Yan, and C. Yang, "Effects of pores on shear bands in metallic glasses: A molecular dynamics study," Computational Materials Science, vol. 50, no. 1, pp. 211-217, 2010.
[18] P. H. Sung and T. C. Chen, "Effects of quenching rate on crack propagation in NiAl alloy using molecular dynamics," Computational Materials Science, vol. 114, pp. 13-17, 2016.
[19] A. Peker and W. L. Johnson, "A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5," Applied Physics Letters, vol. 63, pp. 2342-2344, 2008.
[20] N. Hughes, Liquidmetal created SIM ejector tool for Apple's iPhone, iPad. [Online]. Available: https://appleinsider.com/. [Accessed: 11-Jul-2018].
[21] H. S. Chou, J. C. Huang, L. W. Chang, and T. G. Nieh, "Structural relaxation and nanoindentation response in Zr–Cu–Ti amorphous thin films," Applied Physics Letters, vol. 93, p. 191901, 2008.
[22] R. B. Schwarz and W. L. Johnson, "Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals," Physical Review Letters, vol. 51, pp. 415-418, 1983.
[23] S. B. Newcomb and K. N. Tu, "Transmission electron microscopic observations of amorphous NiZr alloy formation by solid‐state reaction," Applied Physics Letters, vol. 48, p. 1436, 1986.
[24] W. Guo, E. Jägle, J. Yao, V. Maier, S. K. Kerzel, J. M. Schneider, and D. Raabe, "Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates," Acta Materialia, vol. 80, pp. 94-106, 2014.
[25] H. Turnow, H. Wendrock, S. Menzel, T. Gemming, and J. Eckert, "Synthesis and characterization of amorphous Ni–Zr thin films," Thin Solid Films, vol. 30, pp. 48-52, 2014.
[26] L. Xie, P. Brault, A. L. Thomann, and L. Bedra, "Molecular dynamic simulation of binary ZrxCu100−x metallic glass thin film growth," Applied Surface Science, vol. 274, pp. 164-170, 2013.
[27] S. Wolf and R. N. Tauber, Silicon Processing for the VLSI Era. Lattice Pr, 1990.
[28] S. P. Murarka and S. W. Hymes, "Copper metallization for ULSL and beyond," Critical Reviews in Solid State and Materials Sciences, vol. 20, pp. 87-124, 1995.
[29] K. H. Min, K. C. Chun, and K. B. Kim, "Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization," Journal of Vacuum Science & Technology B, vol. 14, pp. 3263-3269, 1996.
[30] W. Diyatmika, J. P. Chu, Y. W. Yen, W. Z. Chang, and C. H. Hsueh, "Thin film metallic glass as an underlayer for tin whisker mitigation: A room-temperature evaluation," Thin Solid Films, vol. 561, pp. 93-97, 2014.
[31] C. W. Wang, P. Yiu, J. P. Chu, C. H. Shek, and C. H. Hsueh, "Zr–Ti–Ni thin film metallic glass as a diffusion barrier between copper and silicon," Journal of Materials Science, vol. 50, pp. 2085-2092, 2015.
[32] C. C. Yu, H. J. Wu, P. Y. Deng, M. T. Agne, G. J. Snyder, and J. P. Chu, "Thin-film metallic glass: an effective diffusion barrier for Se-doped AgSbTe2 thermoelectric modules," Scientific Reports, vol. 7, p. 45177, 2017.
[33] J. H. Chen, J. C. Huo, X. H. Dai, L. J. Wei, J. X. Guo, X. H. Li, L. H. Wang, C. J. Lu, J. B. Wang, and B. T. Liu, "Barrier properties of ultrathin amorphous Al–Ni alloy film in Cu/Si or Cu/SiO2 contact system," Physica Status Solidi A, vol. 214, p. 1600522, 2017.
[34] J. Chu, Y. Wah, Y. W. Yen, and W. Z. Chang, "藉由非晶質之金屬玻璃薄膜做為中間層來改善錫鬚的生成," Taiwan Patent I496683, 2015.
[35] F. Gao and J. Qu, "Calculating the diffusivity of Cu and Sn in Cu3Sn intermetallic by molecular dynamics simulations," Materials Letters, vol. 73, pp. 92-94, 2012.
[36] Y. Zhang, C. Z. Wang, M. I. Mendelev, F. Zhang, M. J. Kramer, and K. M. Ho, "Diffusion in a Cu-Zr metallic glass studied by microsecond-scale molecular dynamics simulations," Physical Review B, vol. 91, p. 180201, 2015.
[37] S. Banerjee, I.Dutta, and B.S.Majumdar, "A molecular dynamics evaluation of the effect of dopant addition on grain boundary diffusion in tin: Implication for whisker growth," Materials Science & Engineering A, vol. 666, pp. 191-198, 2016.
[38] D. Li, H. Chen, X. Sun, B. Qu, R. Zhou, and B. Zhang, "Structural evolution and atomic diffusion behavior in the Ce70Al10Cu20 melt under compression: A theoretical study using ab-initio molecular dynamics simulations," Journal of Applied Physics, vol. 122, p. 135106, 2017.
[39] J. E. Jones, "On the determination of molecular fields," Proceedings of the Royal Society A, vol. 738, pp. 441-462, 1924.
[40] P. M. Morse, "Diatomic molecules according to the wave mechanics," Physical Review, vol. 34, no. 1, pp. 57-64, 1929.
[41] J. Tersoff, "New empirical model for the structural properties of silicon," Physical Review Letters, vol. 56, pp. 632-635, 1986.
[42] F. Cleri and V. Rosato, "Tight-binding potentials for transition metals and alloys," Physical Review B, vol. 48, pp. 22-33, 1993.
[43] M. S. Daw and M. I. Baskes, "Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals," Physical Review B, vol. 29, pp. 6443-6453, 1984.
[44] M. W. Finnis and J. E. Sinclair, "A simple empirical N-body potential for transition metals," Philosophical Magazine A, vol. 50, pp. 45-55, 1984.
[45] D. H. Tsai, "The virial theorem and stress calculation in molecular dynamics," The Journal of Chemical Physics, vol. 70, no. 03, pp. 1375-1382, 1979.
[46] F. Shimizu, S. Ogata, and J. Li, "Theory of shear banding in metallic glasses and molecular dynamics calculations," Materials Transactions, vol. 48, no. 11, pp. 2923-2927, 2007.
[47] B. Chao, S. H. Chae, X. Zhang, K. H. Lu, J. Im, and P. S. Ho, "Investigation of diffusion and electromigration parameters for Cu–Sn intermetallic compounds in Pb-free solders using simulated annealing," Acta Materialia, vol. 55, pp. 2805-2814, 2007.
[48] L. F. Mondolfo, Aluminum Alloys: Structure and Properties. Butterworths, 1976.
[49] S. Plimpton, A. Thompson, S. Moore, and A. Kohlmeyer, LAMMPS Molecular Dynamics Simulator. [Online]. Available: http://lammps.sandia.gov/. [Accessed: 16-Jun-2018].
[50] S. M. R. Mousavi, Y. Mao, and Y. Zhang, "Evaluation of copper, aluminum, and nickel interatomic potentials on predicting the elastic properties," Journal of Applied Physics, vol. 119, p. 244304, 2016.
[51] J. D. Honeycutt and H. C. Andersen, "Molecular dynamics study of melting and freezing of small Lennard-Jones clusters," The Journal of Physical Chemistry, vol. 91, no. 19, pp. 4950-4963, 1987.
[52] W. K. Luo, H. W. Sheng, F. M. Alamgir, J. M. Bai, J. H. He, and E. Ma, "Icosahedral short-range order in amorphous alloys," Physical Review Letters, vol. 92, no. 14, p. 145502, 2004.
[53] A. Stukowski, "Structure identification methods for atomistic simulations of crystalline materials," Modelling and Simulation in Materials Science and Engineering, vol. 20, p. 045021, 2012.
[54] H. Guo, P. F. Yan, Y. B. Wang, J. Tan, Z. F. Zhang, M. L. Sui, and E. Ma, "Tensile ductility and necking of metallic glass," Nature Materials, vol. 6, pp. 735-739, 2007.
[55] D. Jang and J. R. Greer, "Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses," Nature Materials, vol. 9, pp. 215-219, 2010.
[56] D. Şopu, A. Foroughi, M. Stoica, and J. Eckert, "Brittle-to-Ductile Transition in Metallic Glass Nanowires," Nano Letters, vol. 16, no. 7, pp. 4467-4471, 2016.
[57] R. Mohammadzadeha and M. Mohammadzadeha, "Grain boundary and lattice diffusion in nanocrystal α-iron: An atomistic simulation study," Physica A, vol. 482, pp. 56-64, 2017.
[58] B. F. Dyson, T. R. Anthony, and D. Turnbull, "Interstitial diffusion of copper in tin," Journal of Applied Physics, vol. 38, pp. 3408-3409, 1967.