| 研究生: |
黃秋俊 Huang, Ciou-Jyun |
|---|---|
| 論文名稱: |
越臨界流經寬頂堰之寬度效應 Effects of top width on the Transcritical Flow over a Broad-Crested Weir |
| 指導教授: |
唐啟釗
Tang, Chii-Jau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | von Mises轉換 、流線座標 、越臨界流 、臨界流條件 、最佳化計算 、堰寬 |
| 外文關鍵詞: | von Mises transformation, streamline method, transcritical flow, critical flow condition, optimization, the top width |
| 相關次數: | 點閱:187 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文透過一維明渠理論並考慮水面斜率效應的水面動力條件,以求得適當水面邊界條件,採用流線座標法及搭配擴充型von Mises轉換,以"x=x(ξ)" 與"ψ=ψ(η)" 透過轉換後的Laplace方程式反求流線位置"y=y(ξ,η)" ,以進行內部流場分析,並進一步由一維明渠流概念,利用內部流線作為流管底部與自由液面形成流管,逐次往水面方向計算,以此方式獲得二維流場的水面位置及對應二維流量,並利用柏努力定理分析內部流場資訊。
本文為了獲得滿足包含水面斜率之水面動力條件以及發生臨界流條件的水面位置,利用三次式解析解分析臨界流條件之數學關係,並透過最佳化計算中目標函數及限制式條件的設定求解水面位置;但由於本問題難度為當上游亞臨界流跨越至下游超臨界流況時,其發生臨界條件時的臨界位置、臨界流量以及在臨界位置上的水面斜率皆為未知代解數,該臨界條件包含三種未知值,因此在限制式條件新增由臨界流條件及一階微分式推導出與底床及水面高度的一階與二階關係式,進一步計算並獲得水面位置。隨後,以此模式計算不同堰寬之寬頂堰底床,探討堰寬對流量造成的影響,以供讀者在研究此相關問題時參考。
The thesis analyzed the effects of top width on the two-dimensional (2D) open-channel transcritical flow over a broad-crested weir. Since the complete free-surface dynamic condition includes the square of unknown water-surface slope, the free-surface elevation the location of critical section and the critical flow discharge are better calculated by 1D optimization process. For the 2D transcritical flow simulation, the streamline method was applied. To do this, using the extensive von Mises transformation with prescribed" x=x(ξ)" and stream function"ψ=ψ(η)" , we obtained the elevation of internal streamlines "y=y(ξ,η)" by solving Laplace’s equation. The 2D free-surface elevation was analyzed based upon the 1D idea of several choked streamtubes bounded by the water surface and another streamline, starting from the bottom to the uppermost streamlines next to the free surface. As the converged elevations of the free surface and internal streamlines have been calculated, the velocity profile and pressure distribution in the entire flow field can be obtained by the Bernoulli's principle. In this study, the transcritical flows over a broad-crested weir of different top widths were calculated and flow discharge affected by top width is analyzed.
1. 唐啟釗,「流線座標應用於非穩態黏性流場之計算」,海洋工程研討會論文集,第36期,2014.
2. Boussinesq J. Essai sur la the’orie des eaux courantes. Me’moriesPre’sente’s par Divers Savants a` l’Acade’mie des Sciences, Paris; 23 (1), pp. 1–680, 1877.
3. Bazin, M. H., Experiences nouvelles sur 1'ecoulement en deversoir: Annales des Fonts et Chausse'es, v. 7, ser. 7, 1896.
4. Boadway, J.D., “Transformation of elliptic partial differential equations for solving two-dimensional boundary value problems in fluid flow”, International Journal for Numerical Methods in Engineering, 10(3), pp. 527-533, 1976.
5. Barron, R.M. and Hamdan, M.H., “The double von Mises transformation in the boundaries: Theory and analysis study of two-phase fluid flow over curved,” International Journal for Numerical Methods in Fluids, Vol. 14, pp. 883-905, 1992.
6. Barron, R.M., “Computation of incompressible potential flow using von Mises Coordinates.” Mathematics and Computers in Simulation , 31 (1989), pp.177-188, 1989.
7. Castro-Orgaz, O., Giraldez, J.V., Ayuso, J.L., “Higher order critical flow condition in curved streamline flow,” Journal of Hydraulic Research, 46(6), pp. 849–853, 2008.
8. Castro-Orgaz, O., Juan Vicente Giráldez and Jose Luis Ayuso, “Energy and momentum under critical flow conditions,” Journal of Hydraulic Research, Vol. 46, No. 6, pp. 844–848, 2008.
9. Castro-Orgaz, O., “Hydraulics of developing chute flow,” Journal of Hydraulic Research, 47(2), pp. 185–194, 2009.
10. Castro-Orgaz, O., Hager W.H., “Curved streamline transitional flow from mild to steep slopes.” Journal of Hydraulic Research, 47(5), pp. 574–584, 2009.
11. Castro-Orgaz, O. and Hager W.H., “Velocity profile approximations for two-dimensional potential open channel flow,” Journal of Hydraulic Research, pp. 1–11, 2013.
12. Castro-Orgaz, O., “Potential Flow Solution for Open-Channel Flow and Weir-Crest Overflow.” Journal of Irrigation and Drainage Engineering, Vol. 139, pp.551-559, 2013.
13. Chow, V.T., “ Open channel hydraulics”, McGraw-Hill, NewYork, 1959.
14. Fawer, C., Etude de quelques écoulements permanents à filetscourbes (Study of certain steady flows with curved streamlines), thesis, University of Lausanne. La Concorde, Lausanne, Switzerland [in French], 1937.
15. Fenton, J.D., “Channel Flow Over Curved Boundaries and a New Hydraulic Theory,” Proceedings of the 10th Congress of APD-IAHR, Langkawi, Malaysia, Vol. 2, pp. 266–273, 1996.
16. Govinda Rao, N S, and Muralidhar, D, “Discharge Characteristics of Weirs of Finite Crest Width”, La Houllle Blanche, August/Sept, No. 5, pp537-545, 1963.
17. Hager W.H. and Hutter K., “Approximate Treatment of Plane Channel Flow,” Acta Mech., 51, pp. 31–48, 1984.
18. Hager, W.H., “Critical flow condition in open channel hydraulics,” Acta Mechanica, 54(3–4), pp. 157–179, 1985.
19. Henderson, F.M., Open channel flow, McMillan, New York, 1966.
20. Jaeger, C., Engineering fluid mechanics, Blackie and Son, Edinburgh, 1956.
21. Matthew, G.D., “On the influence of curvature, surface tension and viscosity on flow over round-crested weirs,” Proc. ICE 25, pp. 511–524. Discussion (1964) 28, pp. 557–569, 1963.
22. Montes J.S., “Potential flow analysis of flow over a curved-broad crested weir,” 11th Australasian Fluid Mechanics Conf. Auckland, pp. 1293–1296, 1992.
23. Montes J.S., “Potential flow solution to the 2D transition from mild to steep slope.” J. Hydraulic Eng. 120(5), pp. 601–621, 1994.
24. Sivakumaran, N.S., Tingsanchali T. and Hosking, R.J., “Steady shallow flow over curved beds,” J. Fluid Mech., Vol. 128, pp. 469-487, 1983.
25. Thom, A., and Apelt, C., “Field computations in engineering and physics,” Van Nostrand, London, 1961.