| 研究生: |
杜佳龍 Do, Jia-Long |
|---|---|
| 論文名稱: |
受熱負載下環狀熱交換器與多種金屬、陶瓷材料的散熱鰭片之數值分析研究 Analysis of the Annular Heat Exchangers with Various Metallic and Ceramic Fins Subjected to Thermal Loading |
| 指導教授: |
鄭泗滄
Jenq, Syh-Tsang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 熱交換器 、熱應力 、熱負載 、環形鰭片 |
| 外文關鍵詞: | heat exchangers, thermal stress, thermal loading, annular fin |
| 相關次數: | 點閱:93 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文針對環狀熱交換器在受熱負載後,產生熱應力之情形,並且設計出新的鰭片外型來減少所產生之熱應力,設計的過程以有限元素軟體ANSYS WORKBENCH 來做應力分析,並利用其最佳化模組得到最後的幾何尺寸,在熱交換器之內部環境溫度為1200K下,鰭片因熱膨脹造成擠壓,使最大應力出現在管件內壁,因此設計出三個空隙,使得鰭片有了膨脹空間,此外,空隙的根部與管件外壁交接處為內倒角形狀,目的皆是為了減少熱應力大小,而新的設計減少了41%應力值。
另外,探討不同的金屬及陶瓷材料與熱應力之關係,材料分別為鉻銅合金、鉬合金、碳化矽以及碳化鎢四種,熱傳導係數將影響溫度梯度與散熱效果,熱交換器的材料若具有較佳的熱傳性,則受熱負載下所產生的熱應力較小,並且散熱能力較好,因此在選用熱交換器的材料時,熱傳導係數是很重要的因數,在四種熱交換器材料當中,鉻銅合金之散熱效果較好,所產生的熱應力也較小,是最優異的選擇,但鉻銅合金在四者中熔點最低,若溫度超過其容忍範圍,則推薦鉬合金。
The purpose of this work is to study the thermal stress behavior under a static thermal loading for the annular heat exchangers in order to reduce thermal stress and propose a novel design.Current finite element commercial implicit code - ANSYS WORKBENCH with a size optimization module is used to simulate and optimize the geometry of heat exchanger in the design process.Upon examining numerical thermal expansion results, the maximum stress is occurred on the inner wall of tube beneath bottom surface of fin when the heat exchangers is tolerated with a thermal loading at about 1,200K.Therefore, three designed gaps located on fins are proposed to reduce thermal stress in order to increase the expansion space of fin. In addition, an inner chamfer located on the intersection between gap root and outer tube wall is proposed to further decrease thermal stress in the current simulation. A 41% decrease of thermal stress for the annular heat exchangers with three designed gaps containing inner chamfers is reported when compared with that of original annular heat exchangers.
Thermal conductivity is a significant factor to affect temperature gradient and cooling performance for the annular heat exchanger with specific fins in the current simulation. Therefore, annular heat exchangers with various metallic and ceramic materials (chromium copper alloys, molybdenum alloys, silicon carbide and tungsten carbide) containing different thermal conductivities are presented. Based on present simulated results, the chromium copper alloys annular heat exchanger with fins is first priority because the minimum corresponding thermal stress is reported under thermal loading. When the temperature exceeds its tolerance range, molybdenum alloys is proposed.
1.林毅凡,”利用實驗數據預測橢圓鰭管式熱交換器之鰭片上的熱傳特性”,國立成功大學,2009
2. 田灝,”百葉窗式熱交換器之熱傳特性及其與交錯式熱交換器的性能比較分析”,國立台灣科技大學,2009.
3. 陳志忠,”環狀鰭管式熱交換器圓鰭片上自然對流熱傳特性之探討”,國立台南大學,2009.
4.王啟川,”熱交換器設計” 臺北市:五南,2001.
5. Yasar Islamoglu,” Finite element model for thermal analysis of ceramic heat exchanger tube under axial non-uniform convective heat transfer coefficient” , Materials and Design 25 479–482,2004.
6.Yasar Islamoglu,” Numerical analysis of the influence of a circular fin with different profiles on the thermal characteristics in a ceramic tube of heat transfer equipment” , Journal of Pressure Vessels and Piping 583–587,2004.
7. Ting Ma,Min Zeng,Yanpeng Ji,Haibin Zhu, Qiuwang Wang, “Investigation of a novel bayonet tube high temperature heat exchanger with inner and outer fins” ,Journal of hydrogen 36 3757-3786,2011.
8. Ting Ma, Yitung Chen, Min Zeng, Qiuwang Wang, “Stress analysis of internally finned bayonet tube in a high temperature heat exchanger” ,Journal of Thermal Engineering 43 101-108,2012.
9. Ting Ma, Min Zeng, Bengt Sundén, Mohamed B. Trabia, Qiuwang Wang, “Effect of lateral fin profiles on stress performance of internally finned tubes in a high temperature heat exchanger” ,thermal engineering 50 886-895,2013.
10. Lien-Tsai Yu, Cha’o-Kuang Chen,”Optimization of circular fns with variable thermal parameters” , Journal of The Franklin Institute 225B 77-95,1999.
11. Huseyin Yapici, Bilge Albayrak,”Numerical solutions of conjugate heat transfer and thermal stresses in a circular pipe externally heated with non-uniform heat flux” , Energy Conversion and Management 45 927–937,2004.
12. I.T. Al-Zaharnah , B.S. Yilbas , M.S.J. Hashmi , “Conjugate heat transfer in fully developed laminar pipe flow and thermally induced stresses” , mechanics engineer 190 1091–1104,2000.
13. I.T. Alzaharnah,M.S. Hashmi, B. Yilbas,” Thermal stresses in thick-walled pipes subjected to fully developed laminar flow” , Journal of Materials Processing Technology 118 50–57,2001.
14. Incropera, DeWitt,”Fundamentals of Heat and Mass Transfer “, New York: J. Wiley, 2002.
15.張仲卿,侯順雄,張進寬,杜鳳棋,”熱傳遞”,台北市:高立,1997.
16. Timoshenko,”Strength of materials” , New York:D.Van Nostrand Company inc, 1940.
17.Hetnarski,Richard B,tanigwa,Yoshinobu,” thermal stresses” , Rochester, NY : Lastran, 2000.
18. Faruk Sen, Kemal Aldas,” Elastic–plastic thermal stress analysis in a thermoplastic composite disc applied linear temperature loads via FEM” , Advances in Engineering Software 40 813–819,2009.
19. D.S. Napoiitano,J. H. Lienhard V,”Yield Limits of Plates at Extremely High Heat Flux” ,Transactions of the ASME,1998.
20.K. Liu,X.P. Li, M. Rahman, X.D. Liu” CBN tool wear in ductile cutting of tungsten carbide”, Wear 255 1344–1351,2003.
21. Deng Jianxin,Liu Lili,Ding Mingwei,” Sand erosion performance of SiC/(W,Ti)C gradient ceramic nozzles by abrasive air-jets” , Materials and Design 28 2099–2105,2007.
22. Ding Zeliang ,Deng Jianxin,Zen Xiaohong, Wu Jiping, Zou Yongsheng,” Thermal erosion of WC-based cemented carbide nozzles by coal water slurry” ,Journal of Refractory Metals & Hard Materials 26 334–339,2008.
23. Zhang Xiaoying, “Coupled simulation of heat transfer and temperature of the composite rocket nozzle wall” ,Aerospace Science and Technology 15 402–408,2011.
24. Li-na Peng, Guo-qiang He, Jiang Li, Lei Wang, Fei Qin,” Effect of combustion gas mass flow rate on carbon/carbon composite nozzle ablation in a solid rocket motor” , CARBON 50 1554–1562,2012