簡易檢索 / 詳目顯示

研究生: 吳嘉恆
Wu, Chia-Heng
論文名稱: 聚乙烯亞胺和單寧酸輔助合成形狀可控制奈米金顆粒與螢光奈米顆粒應用於表面增強拉曼散射和螢光細胞影像
Polyethylenimine- and tannic acid-assisted synthesis of shape-controllable Au nanoparticle and fluorescent nanoparticles for SERS/fluorescence cellular imaging
指導教授: 黃志嘉
Huang, Chih-Chia
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 69
中文關鍵詞: 單寧酸聚乙烯亞胺拉曼螢光細胞影像
外文關鍵詞: TNA, PEI, Raman, Fluorescent, Cell image
相關次數: 點閱:89下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用單寧酸與聚乙烯亞胺與四氯金酸在水的溶劑下進行一鍋合成法反應。單寧酸具有的金屬離子還原劑的效果,高分子聚乙烯亞胺可以做為保護劑,製作出沉澱物的奈米金顆粒與上清液的螢光奈米顆粒的產物,並透過不同濃度的聚乙烯亞胺控制奈米金顆粒的形狀與尺寸變化。將合成的奈米金藉由拉曼光譜的量測,並對照TEM圖的奈米粒子判斷,發現具有尖刺形狀的參數都有較好的放大訊號,確定是熱點效應讓訊號有強烈的放大,除此之外我們從不同奈米粒子的大小判斷出粒徑比較大的奈米粒子放大訊號會比其他的好,因此可以藉由控制粒子形狀與大小可以增強SERS效果。最後發現分支PEI中的Au@TNA/PEI:0.175 mM參數具有最好的SERS效果,我們期望可以將其應用在生物影像,藉由近紅外光的照射產生的電磁場放大,亞甲基藍分子原本微弱的拉曼訊號也跟著增強,最後可以在生物體內的環境被偵測到,達到追蹤與標定的效果。
    除了奈米金顆粒外,我們發現上清液具有螢光的特性,將其用365nm紫外光照射時會產生450 nm到500 nm的螢光,為了能夠與奈米金一起應用在生物影像,我們透過細胞生存率實驗找出適合的濃度與細胞培養,最後在螢光顯微鏡下可以判斷出上清液進入到細胞質裡面,產生有標記的效果。
    未來希望能夠同時結合上清液與沉澱物的螢光與SERS特性應用在生物影像,達到雙影像系統的偵測,提供更好的解析度與減少誤差,改善單影像的不足。

    We want to synthesize materials with two optical properties and apply them to biological image detection. Compared to single images, the use of dual image system can increase the resolution and reduce the misdiagnosis of the situation. So master this technology can make the image to judge more information, and improve the application of nano-particles. In my research, we use one-pot synthesis that tannic acid was reacted with polyethyleneimine and tetrachloroauric acid under the solvent of water. Finally, we made the product of the precipitated nano gold particles and the supernatant of the fluorescent nanoparticles. The synthesized nano gold was measured by Raman spectroscopy, finding that the parameters with spikes have a better amplification signal which come from hot spot. Beside, particle size larger nanoparticle amplification signal will be better than the other. So we can control the particle shape and size can enhance the SERS effect.
    In addition to the nano-gold particles, we found that the supernatant has fluorescent property, it will produce 450 nm to 500 nm fluorescence by 365 nm light irradiating. Through the cell survival rate experiment to find the appropriate concentration and cell culture, and the fluorescence microscope can determine the supernatant into the cytoplasm, showing the effect of the supernatant with the tag.The future hope to be able to combine the supernatant with the fluorescence and SERS characteristics applied in the biological image, to achieve dual image system detection. To provide better resolution and reduce errors, improve the single image of the lack of.

    摘要 i Extended Abstract ii 致謝 vi 目錄 vii 表目錄 xi 圖目錄 xii 章節1 緒論 1 1.1 生醫光電 1 1.2 奈米材料 1 1.2.1 單寧酸 (Tannic acid, TNA) 2 1.2.2 聚乙烯亞胺 (Polyethylenimine, PEI) 2 1.3 奈米粒子與生物應用 2 1.3.1 奈米粒子 2 1.3.2 近紅外光的吸收與散射特性 3 1.3.3 拉曼光譜 (Raman spectroscopy) 3 1.3.3.1 表面增強拉曼散射 (Surface-enhanced Raman scattering , SERS) 4 1.3.3.2 SERS的原理 4 1.3.3.3 SERS的應用 5 1.3.4 光致發光 5 1.4 生物影像 6 1.4.1 影像系統 6 1.4.2 雙影像結合 7 1.5 光動力治療(Photodynamic therapy ,PDT) 8 1.5.1 光敏劑 8 1.5.2 追蹤方式 9 章節2 動機 16 章節3 材料與方法 17 3.1 實驗材料 17 3.2 實驗設備 18 3.3 實驗方法 19 3.3.1 分支型PEI的金奈米顆粒合成 19 3.3.2 線性PEI的金奈米顆粒合成 20 3.3.3 拉曼檢測 20 3.3.4 細胞培養 20 3.3.5 細胞存活率實驗 (MTT assay) 21 3.3.6 奈米金與細胞共培養 21 3.3.7 奈米金的細胞影像偵測 21 3.3.8 活細胞影像偵測 22 3.3.9 分支型PEI上清液的合成 22 3.3.10 分支型PEI上清液的影像偵測 22 章節4 結果與討論 23 4.1 Au@TNA/PEI奈米材料的合成 23 4.1.1 分支型PEI奈米金的合成 23 4.1.2 線性PEI奈米金的合成 24 4.2 結構特性 24 4.2.1 分支型PEI奈米金 24 4.2.2 線性PEI奈米金 25 4.3 光學特性 25 4.3.1 紫外-可見光吸收光譜 25 4.3.1.1 分支型PEI奈米金 26 4.3.1.2 線性PEI奈米金 27 4.3.2 表面電位 28 4.3.3 拉曼光譜 28 4.3.3.1 分支型PEI奈米金 29 4.3.3.2 線性PEI奈米金 29 4.3.4 Au@TNA/PEI: 0.175mM 30 4.3.4.1 晶格結構分析 30 4.3.4.2 傅里葉轉換紅外光譜儀(FTIR) 31 4.4 體外細胞實驗 31 4.4.1 細胞生存率 31 4.4.2 細胞影像 31 4.4.3 細胞螢光與拉曼影像 32 4.4.4 活細胞的量測方式 34 4.4.5 活細胞的拉曼訊號 35 4.5 分支型PEI合成溶液之上清液 35 4.5.1 細胞生存率 36 4.5.2 細胞影像 36 4.6 與其他奈米材料比較 37 章節5 結論與未來展望 61 5.1 結論 61 5.2 未來展望 61 參考文獻 62

    [1] C. Krafft, I. W. Schie, T. Meyer, M. Schmitt, and J. Popp, Chem. Soc. Rev., 2016, 45, 1819–1849
    [2] G. Thomas, J. van Voskuilen, H. C. Gerritsen, and H. Sterenborg, J. Photochem. Photobiol. B-Biol., 2014, 141, 128–138
    [3] J. P. McCanna, A. Sonnenberg, and M. J. Heller, J. Biophotonics , 2014, 7, 863–873
    [4] F. Chiavaioli, C. Trono, A. Giannetti, M. Brenci, and F. Baldini, J. Biophotonics, 2014, 7, 312–322
    [5] Q. Nahar, F. Fleissner, J. Shuster, M. Morawitz, C. Halfpap, M. Stefan, U. Langbein, G. Southam, and S. Mittler, J. Biophotonics, 2014, 7, 542–551
    [6] A. B. Ormond and H. S. Freeman, Materials, 2014, 6, 817–840 (2013).
    [7] H. Q. Wang, S. Zandi, A. M. D. Lee, J. H. Zhao, H. Lui, D. I. McLean, and H. S. Zeng, J. Biophotonics, 2014, 7, 534–541
    [8] S. R. Foster, E. I. Galanzha, D. C. Totten, H. Benes, R. J. S. Reis, and V. P. Zharov, J. Biophotonics, 2014, 7, 465–473
    [9] Sau, T. K.; Murphy, C. J.,J. Am. Chem. Soc. 2004, 126, 8648– 8649
    [10] Abadeer, N. S., Brennan, M. R., Wilson, W. L., Murphy, C. J., ACS Nano, 2014, 8, 8392– 8406
    [11] Xiao-fei Huang, Jing-wei Jia, Zheng-ke Wang, Qiao-ling Hu, Chinese Journal of Polymer Science, 2015, 33, 2, 284–290
    [12] E. Bouki, V.K. Dimitriadis, M. Kaloyianni, S. Dailianis, Res., 2013, 85, 13-20
    [13] P. Hupkens, H. Boxma, J. Dokter, Burns, 1995, 21, 57-61
    [14] S. Sagbas, N. Aktas, N. Sahiner, Appl. Surf. Sci., 2015, 354, 306-313
    [15] M. Sahiner, S. Sagbas, B.O. Bitlisli, Appl. Polym. Sci., 2015,132, 41876
    [16] N. Sahiner, S. Sagbas, M. Sahiner, C. Sılan, Int. J. Biol. Macromol., 2015, 82, 150-159
    [17] Yanzhen Cao, Rongfeng Zheng, Xiaohui Ji, Hong Liu, Renguo Xie, Wensheng Yang, Langmuir, 2014, 30, 3876–3882
    [18] Sivaraman, S. K., Elango, I., Kumar, S., Santhanam, Curr. Sci., 2009, 97, 1055– 1059
    [19] Junwei Xin , Xunjun Yin , Shougang Chen , Aiguo Wu, Lett., 2009, 63, 2236– 2238
    [20] I. Yudovin-Farber, J. Golenser, N. Beyth, E.I. Weiss, A.J. Domb, Nanomaterials, 2010, 826343
    [21] Kobayashi S, Shirasaka H, Suh K-D, Uyama H, Polym J, 1990, 22,442–446
    [22] Z.H. Chen, S.B. Deng, H.R. Wei, B. Wang, J. Huang, G. Yu, , ACS Appl. Mater. Interfaces, 2013, 5, 6937-6945
    [23] B. Liu, Y.M. Huang, J. Mater. Chem., 2011, 21, 17413-17418
    [24] L.M. Shen, L.P. Zhang, M.L. Chen, X.W. Chen, J.H. Wang, Carbon, 2013, 55 , 343-349
    [25] Neu M, Sitterberg J, Bakowsky U, Kissel T, Biomacromolecules , 2006, 7, 3428–3438
    [26] Wang G, Yin H, Ng J, Cai L, Li J, Tang B, Liu B, Polym Chem,2013, 4, 5297–5304
    [27] Kislenko V, Oliynyk L, J Polym Sci A Polym Chem, 2002, 40, 914–922
    [28] Maketon W, Zenner C, Ogden K, Environ Sci Technol, 2008, 42, 2124–2129
    [29] O. Boussif, H.F. Lenzoualc, M.A. Zanta, M.D. Mergny, D. Scherman, B., Demeneix, J.P. Behr, Proc Natl Acad Sci U S A, 1995 ,92, 7297–7301.
    [30] S. Moffatt, S. Wiehle, R.J. Cristiano, Gene Ther., 2006, 13 , 1512-1523
    [31] P.B. Valladier, J.P. Behr, Cytotechnology, 2001, 35 , 1573
    [32] S.H. Huh, H.J. Do, H.Y. Lim, D.K. Kim, S.J. Choi, H. Song, N.H. Kim, J.K. Park, W.K. Chang, H.M. Chung, J.H. Kim, Biologicals, 2007, 35, 165-171
    [33] Hirsch, L. R., Stafford, R. J., Bankson, J. A., Sershen, S. R., Rivera, B., Price, R. E., Hazle, J. D., Halas, N. J., West, J. L., Natl. Acad. Sci. U. S. A., 2003, 100, 13549– 13554
    [34] Tsai, M. F., Chang, S. H. G., Cheng, F. Y., Shanmugam, V., Cheng, Y. S., Su, C. H. , Yeh, C. S. , ACS Nano, 2013, 7, 5330–5342
    [35] Tian, Q. W., Tang, M. H., Sun, Y. G., Zou, R. J., Chen, Z. G., Zhu, M. F., Yang, S. P., Wang, J. L., Wang, J. H. , Hu, J. Q. , Adv. Mater, 2011, 23, 3542–3547
    [36] Yujie Xiong, Jingyi Chen, Benjamin Wiley, Younan Xia, Yadong Yin, Zhi-Yuan Li. , Nano Lett., 2005, 5, 1237–1242
    [37] X. Q. Huang, S. H. Tang, X. L. Mu, Y. Dai, G. X. Chen, Z. Y. Zhou, F. X. Ruan, Z. L. Yang and N. F. Zheng, Nat. Nanotechnol., 2011, 6, 28–32
    [38] O. Veiseh, J. W. Gunn and M. Zhang, Adv Drug Deliv Rev, 2010, 62, 284-304.
    [39] M. J. Chiu, S. Y. Yang, H. E. Horng, C. C. Yang, T. F. Chen, J. J. Chieh, H. H. Chen, T. C. Chen, C. S. Ho, S. F. Chang, H. C. Liu, C. Y. Hong and H. C. Yang, ACS Chem Neurosci, 2013, 4, 1530-1536.
    [40] Liao, M. Y., Lai, P. S., Yu, H. P., Lin, H. P. & Huang, C. C., Chem. Commun , 2012, 48, 5319–5321
    [41] Chu, M. Q., Shao, Y. X., Peng, J. L., Dai, X. Y., Li, H. K., Wu, Q. S. , Shi, D. L. , Biomaterials ,2013, 34, 4078–4088
    [42] C. Greulich, D. Braun, A. Peetsch, J. Diendorf, B. Siebers, M. Epple, M. Köller, RSC Adv., 2012, 2, 6981
    [43] Tzu-Ming Liu, João Conde, Tomasz Lipiński, Artur Bednarkiewicz and Chih-Chia Huang, NPG Asia Materials , 2016, 8, 295
    [44] A.M. Alkilany, C.J. Murphy, J. Nanoparticle Res. , 2010, 12, 2313-2333
    [45] Jaque, D., Maestro, L. M., del Rosal, B., Haro-Gonzalez, P., Benayas, A., Plaza, J. L., Rodriguez, E. M. & Sole, J. G. , Nanoscale, 2014, 6, 9494–9530
    [46] Li, N., Zhao, P. X. , Astruc, D., Angew. Chem., 2014, 53, 1756–1789
    [47] Hu, M., Chen, J. Y., Li, Z. Y., Au, L., Hartland, G. V., Li, X. D., Marquez, M. , Xia, Y. N. , Soc. Rev. , 2006, 35, 1084–1094
    [48] Lucky, S. S., Soo, K. C., Zhang, Y. , Chem. Rev. , 2015, 115, 1990–2042
    [49] Tzu-Ming Liu, João Conde, Tomasz Lipiński, Artur Bednarkiewicz, Chih-Chia Huang, NPG Asia Materials , 2016, 8, 295
    [50] http://en.wikipedia.org/wiki/Surface-enhanced_Raman_spectroscopy
    [51] M. Fleischmann, P. J. Hendra , A.J. Mcquillan, Chem Phys Lett, 1974, 26, 163–166.
    [52] D. L. Jeanmaire , R. P. V. Duyne, J Electroanal Chem, 1977, 84, 1–20
    [53] H. Xu, J. Aizpurua, M. Ka , P. Apell, Phys Rev E, 2000, 62, 4318
    [54] W. L. Barnes, A. Dereux, T. W. Ebbesen, Nature, 2003, 424, 824
    [55] WKelly KL, Coronado E, Zhao LL, Schatz GC, J Phys Chem B, 2003, 107, 668–677.
    [56] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C., Schatz, J.Phys. Chem, 2003, 107, 668-677
    [57] S. A. Maier, H. A. Atwater, J.Appl. Phys, 2005, 98, 0111011-01110110
    [58] F. J. Garcı´a-Vidal , J. B. Pendry, Phys Rev Lett, 1996, 77, 1163-1166
    [59] K. 1. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtulus, S. H. Lee, N. C. Lindquist, S. H. Oh and C. L. Haynes, Phys Chem Chem Phys, 2011, 13, 11551-11567.
    [60] M. Shaban , A. R. Galaly, Sci Rep, 2016, 6, 25307.
    [61] W. E. Doering ,S. Nie, J Phys Chem B, 2002, 106, 311-317
    [62] D. Y. Wu, L. B. Zhao, X. M. Liu, R. Huang, Y. F. Huang, B. Ren and Z. Q. Tian, Chem Commun (Camb), 2011, 47, 2520-2522.
    [63] O. Uckermann, R. Galli, S. Tamosaityte, E. Leipnitz, K.D. Geiger, G. Schackert, E. Koch, G. Steiner, M. Kirsch, PLoS One, 2014, 9, 107115
    [64] J.N. Bentley, M. Ji, X.S. Xie, D.A., Expert Rev. Anti-Infect. Ther. , 2014, 14 , 359-361
    [65] M. Ji, D.A. Orringer, C.W. Freudiger, S. Ramkissoon, X. Liu, D. Lau, A.J. Golby, I. Norton, M. Hayashi, N.Y.R. Agar, G.S. Young, C. Spino, S. Santagata, S. Camelo-Piragua, K.L. Ligon, O. Sagher, X.S. Xie , Sci. Transl. Med., 2013, 5, 201
    [66] Samanta A, Maiti KK, Soh KS, Liao X, Vendrell M, Dinish U, Yun SW, Angew Chem, 2011, 50, 6089–6092
    [67] L. Han, Y. Zhang, Y. Zhang, Y. Shu, X.W. Chen, J.H. Wang, Talanta, 2017, 171, 32-38
    [68] Lu W, Singh AK, Khan SA, Senapati D, Yu H, Ray PC. , J Am Chem Soc. , 2010, 132, 18103–18114.
    [69] Gruber, A., Drabenstedt, A., Tietz, C., Fleury, L., Wrachtrup, J. , Borczyskowski, C. , Science 276, 1997, 2012–2014
    [70] Yu, S. J., Kang, M. W., Chang, H. C., Chen, K. M. & Yu, Y. C. , J. Am. Chem. Soc. , 2005, 127, 17604–17605
    [71] Hui, Y. Y., Su, L. J., Chen, O. Y., Chen, Y. T., Liu, T. M. & Chang, H. C. , Sci. Rep., 2014, 4, 5574
    [72] Welsher, K., Sherlock, S. P. , Dai, H. J. , Proc. Natl. Acad. Sci. USA , 2011, 108, 8943–8948
    [73] Bisesi, J. H. Jr, Merten, J., Liu, K., Parks, A. N., Afrooz, A. R., Glenn, J. B., Klaine, S. J., Kane, A. S., Saleh, N. B., Ferguson, P. L. , Sabo-Attwood, T. , Environ. Sci. Technol. , 2014, 48, 1973–1983
    [74] Hashimoto, T., Yamada, T. , Yoko, T. , J. Appl. Phys.,1996, 80, 3184
    [75] Au, L., Zhang, Q., Cobley, C. M., Gidding, M., Schwartz, A. G., Chen, J. Y., Xia, Y. N. , ACS Nano 4, 2010, 35–42
    [76] Li, K. H., Wang, Y. L., Cai, F. H., Yu, J. X., Wang, S. W., Zhu, Z. F., Chu, L. L., Zhang, H. Q., Qian, J. & He, S. L. , RSC Adv., 2015, 5, 2851–2856
    [77] Mohan, N., Chen, C. S., Hsieh, H. H., Wu, Y. C. & Chang, H. C. , Nano Lett., 2010, 10, 3692–3699
    [78] Wu, T. J., Tzeng, Y. K., Chang, W. W., Cheng, C. A., Kuo, Y., Chien, C. H., Chang, H. C. & Yu, J. , Nat. Nanotechnol, 2013, 8, 682–689
    [79] Kim, J.-H., Heller, D. A., Jin, H., Barone, P. W., Song, C., Zhang, J., Trudel, L. J., Wogan, G. N., Tannenbaum, S. R. , Strano, M. S. , Nat. Chem, 2009, 1, 473–481
    [80] Lim, E. K., Kim, T., Paik, S., Haam, S., Huh, Y. M., Lee, K. , Chem. Rev, 2015, 115, 327–394
    [81] Y. P. Li, T. Y. Lin, Y. Luo, Q. Q. Liu, W. W. Xiao, W. C. Guo,. D. Lac, H. Y. Zhang, C. H. Feng, S. Wachsmann-Hogiu,. J. H. Walton, S. R. Cherry, D. J. Rowland, D. Kukis,. C. X. Pan and K. S. Lam, Nat. Commun. , 2014, 5, 4712
    [82] Cheng C, Shi Y, Li M, Xing M, Wu Q, Mater Sci Eng C Mater Biol Appl, 2017, 79, 473-480
    [83] Ivana Martinić, Svetlana V. Eliseeva, Tu N. Nguyen, Frédéric Foucher, David Gosset, Frances Westall, Vincent L. Pecoraro, Stéphane Petoud, Chemical Science, 2017, 9
    [84] Navas-Moreno M, Mehrpouyan M, Chernenko T, Candas D, Fan M, Li JJ, Yan M, Chan JW, Sci Rep, 2017, 7, 4471
    [85] Chun-Chen Yanga , Yu-Jun Sun , Pei-Hsuan Chung , Wei-Yao Chen ,Wojciech Swieszkowski , Weiming Tian , Feng-Huei Lin , Ceramics International , 2017 , 43 , 12675-12683
    [86] C.A. Robertson, D.H. Evans, H. Abrahamse, J. Photochem. Photobiol. B, 2009 , 96 , 1-8
    [87] R.R. Allison, K. Moghissi, Clin. Endosc , 2013 , 46, 24-29
    [88] Castano A.P. , Demidova T.N. , Hamblin M.R. , Photodiagn Photodyn Therapy , 2004, 1, 279—293
    [89] Lu Y, Jiao R, Chen X. , J. Cell. Biochem , 2008, 105, 1451-1460
    [90] Marina Usacheva, Suresh Kumar Swaminathan, Ameya R. Kirtane, Jayanth Panyam , Mol. Pharmaceutics, 2014, 11, 3186–3195
    [91] http://medicinembbs.blogspot.tw/2011/03/programmed-cell-death-apoptosis.html
    [92] Bo Wu, Xiao-Qi Li, Tong Huang, Shu-Ting Lu, Bing Wan, Ru-Fang Liao, Yu-Shuang Li, Aju Baidya, Qing-Yun Long, Hai-Bo Xu , Biomater Sci , 2017 , 9
    [93] Thi Tuong Vy Phan, Subramaniyan Bharathiraja, Van Tu Nguyen, Madhappan Santha Moorthy, Panchanathan Manivasagan, Kang Dae Leed, Junghwan Oh, RSC Advances, 2017, 56
    [94] He J, Wang Y, Missinato MA, Onuoha E, Perkins LA, Watkins SC, St Croix CM, Tsang M, Bruchez MP, Nat Methods, 2016, 13, 263-8
    [95] P.R. Sarika, A. Pavithran, N.R. James, Food Hydrocoll., 2015, 49, 176-182
    [96] A. Sionkowska, B. Kaczmarek, K. Lawandowska , J. Mol. Liq., 2014, 199, 318-323
    [97] T. Shutava, M. Prouty, D. Kommireddy, Y. Lvov, Macromolecules, 2005, 38, 2850-2858
    [98] C. Ringwald, V. Ball, J. Colloid Int. Sci., 2015, 450 , 119-126
    [99] S. Link, M. A. El-Sayed, J. Phys. Chem. B, 1999, 103, 8410
    [100] Abadeer, N. S., Brennan, M. R., Wilson, W. L., Murphy, C. J. , ACS Nano, 2014, 8, 8392– 8406
    [101] Abbas Afkhami , Pegah Hashemia , Hasan Bagheri , Jafar Salimian , Ali Ahmadi , Tayyebeh Madrakian , Biosensors and Bioelectronics , 2017 , 93 , 124-131
    [102] 張睿,蔡偉博, 「奈米凝膠在藥物傳輸的應用」台灣化學工程學會,2015年,第62卷,第1期,第84-91頁
    [103] 黃聆翔,「奈米螢光物質與奈米金粒子濃度對螢光的影響之研究」,國立臺北科技大學,2014年光電工程研究所碩士論文。
    [104] 曾賢德,「金奈米粒子的表面電將共振特性:耦合、應用與樣品製作,物理雙月刊」, 2010年7月,第32卷,第2期,第126-135頁

    無法下載圖示 校內:2022-10-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE