| 研究生: |
徐年宗 Hsu, Nien-Chung |
|---|---|
| 論文名稱: |
微影製程中金屬雜質擴散之理論研究與實驗數據分析 Diffusion of Metallic Impurities in Lithographical Processes: Theory and Experimental Data Analysis |
| 指導教授: |
楊天祥
Yang, Tian-Shiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 雜質 、擴散 |
| 外文關鍵詞: | diffusion, impurities |
| 相關次數: | 點閱:61 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
配合著製程技術迅速發展與改良的腳步,近年來積體電路之設計製作持續地以穩定的速度朝著微小化與高集積度的方向發展。在這同時,半導體元件主動區域內缺陷密度之控制顯然是在產品良率穩定保持上至為重要的一件工作。以深次微米元件為例,單一金屬雜質粒子的沉積即足以造成元件預設電子性質的嚴重扭曲,並導致元件失效。因此,唯有有效地控制積體電路元件內之雜質含量方可能提高產品良率;而欲達此一目的,我們必須對半導體製程中雜質進入底材的途徑與行為作更深入的探討。
受到先前有趣實驗研究結果的啟發,在本研究中我們針對半導體微影製程中金屬雜質在底材及光阻劑內的擴散行為進行理論研究;特別是要探討金屬雜質擴散率與烘烤溫度及邊界效應影響之間的關係。同時,本文中我們透過理論研究與實驗數據分析方法之擬定及應用,試圖對金屬雜質在底材及光阻劑內的擴散係數與其在二者界面上的分離係數作定量的推定;更進一步地利用分析結果重建整體擴散系統內之數據。本文所獲得的成果可用來指引將來實驗之設計規劃與數據之收集整理原則,並且用來增進實際微影製程中金屬雜質污染控制之效率。
Abstract
The increasing complexity and miniaturization of modern integrated circuits (ICs) demand a higher device yield, and hence lower defect density in the active region of silicon devices. For a deep-sub-micrometer device, a single metal precipitate could cause a distortion of electrical properties, resulting in a faulty IC. Therefore, a better knowledge of the diffusion route and behavior of metallic impurities introduced into the silicon substrate during device fabrication is essential for contamination control and for promoting the circuit yield.
Inspired by interesting previous experimental results, in this project we conduct a theoretical investigation into the problem of metallic impurity diffusion across the photoresist/substrate interface in lithographical processes for semiconductor devices. In particular, the temperature dependence of the impurity diffusion ratio, i.e., the ratio of the amount of impurities diffused into the substrate to that originally in the photoresist, is studied. Furthermore, here we quantify how much the temperature dependence of impurity diffusion ratio is altered by the effects of finite photoresist thickness. Even more aggressively, in order to fully exploit experimental results, analytical methods for extracting the values of the mass diffusion coefficients of various impurities in the substrate and photoresist, and their segregation coefficients at the interface, from experimental data are devised. It is expected that the results of this thesis will be useful for future experimental planning and for contamination control in realistic lithographical processes.
[1] 莊達人, VLSI製程設備, 高立圖書, 中華民國87年10月。
[2] S. M. Sze, VLSI Technology, McGraw–Hill, New York (1988).
[3] C. Y. Chang and S. M. Sze, ULSI Technology, McGraw–Hill, New York (1996).
[4] P. J. Ward, A survey of iron contamination in silicon substrates and its impact on circuit yield, J. Electrochem. Soc., 129, 2573 (1982).
[5] M. Miyazaki, M. Sano, S. Sumita, and N. Fujino, Jpn. J. Appl. Phys., 30 (2B), L295 (1991).
[6] A. L. P. Rotondaro, T. Q. Hurd, A. Kaniava, J. Vanhellemont, E. Simoen, M. M. Heyns, and C. Claeys, Impact of Fe and Cu contamination on the minority carrier lifetime of silicon substrates, J. Electrochem. Soc., 143, 3014 (1996).
[7] F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, Characterization of positive photoresist, IEEE Trans. Electron. Devices, ED-22, 445 (1975).
[8] D. J. Kim, W. G. Oldham, and A. R. Neureuther, Development of positive photoresist, IEEE Trans. Electron. Devices, ED-31, 1730 (1984).
[9] C. A. Mack, Development of positive photoresist, J. Electrochem. Soc., 134, 148 (1987).
[10] K. Suzuki, Y. Yamashita, K. Kataoka, K. Yamazaki, and K. Kawamura, Segregation coefficient of boron and arsenie at polycrystalline silicon/SiO2 interface, J. Electrochem. Soc., 140, 2960 (1993).
[11] R. J. Borg and G. J. Dienes, An Introduction to Solid State Diffusion, Academic Press, CA (1988).
[12] I. P. Glekas, Application of a three dimensional model for the prediction of pollutant dispersion in Cyprus coastal waters, Water Sci. Technol., 32, 179 (1995).
[13] G. R. Choppin and J. Rydberg, Nuclear Chemistry, Pergamon Press, Oxford (1980).
[14] M.-Y. Wang, F.-H. Ko, T.-K. Wang, C.-C. Yang, and T.-Y. Huang, Characterization and Modeling of out–diffusion of manganese and zinc impurities from deep ultraviolet photoresist, J. Electrochem. Soc., 146, 3455 (1999).
[15] E. R. Weber, Transition metals in silicon, Appl. Phys. A, 30, 1 (1983).
[16] M. B. Shabani, T. Yoshimi, and H. Abe, Low temperature out -diffusion of Cu from silicon waters, J. Electrochem. Soc., 143, 2025 (1996).
[17] J.-P. Joly, Metallic contamination assessment of silicon waters, Microelctronic Engineering, 40, 285 (1998).
[18] T. Izumi, Model analysis of segregation phenomena for silicon single crystal growth from the melt, J. Crystal Growth, 181, 210 (1997).
[19] S. Divinski, M. Lohmann, and C. Herzig, Ag grain boundary diffusion and segregation in Cu: Measurements in the type B and C diffusion regimes, Acta Mater, 49, 249 (2001).
[20] D. A. Antoniadis, A. G. Gonzalez, and W. Dutton, Boron in near –intrinsic (100) and (111) silicon under inert and oxidizing ambients diffusion and segregation, J. Electrochem. Soc., 125, 813 (1978).
[21] R. B. Fair, and J. C. C. Tsai, J. Electrochem. Soc., 125, 2050 (1978).
[22] J. W. Colby, and L. E. Katz, Boron segregation at Si-SiO2 interface as a function of temperature and orientation, J. Electrochem. Soc., 123, 409 (1976).
[23] W. B. Krantz, R. J. Ray, R. L. Sani, and K. J. Gleason, Theoretical study of the transport processes occurring during the evaporation step in asymmetric membrane casting, J. Membrane Sci., 29, 11 (1986).
[24] S. S. Shojaie, W. B. Krantz, and A. R. Greenberg, Dense polymer film and membrane formation via the dry–cast process: Part i.Model development, J. Membrane Sci., 94, 255 (1994).
[25] S. S. Shojaie, W. B. Krantz, and A. R. Greenberg, Dense polymer film and membrane formation via the dry–cast process: Part ii.Model validation and morphological studies, J. Membrane Sci., 94, 281 (1994).
[26] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford: Clarendon Press (1959).
[27] V. S. Arparci, Conduction Heat Transfer, Addison–Wesley (1966).
[28] M. E. Glicksman, Diffusion in Solids, Wiley (2000).
[29] C.-E. Froberg, Numerical Mathematics, Benjamin/Cummings (1985).
[30] M. D. Greenberg, Advanced Engineering Mathematics, Prentice–Hall (1998).
[31] A. J. Poggio, M. L. Vanblaricum, E. K. Miller, and R. Mittra, Evaluation of processing technique for transient data, IEEE Trans. on Antennas and Propagation, AP-26, 165 (1978).
[32] D. A. Pierre, J. R. Smith, D. J. Trudnowski, and J. W. Pierre, Prony based methods for simultaneous identification of transfer functions and initial conditions, Computers Elect. Engng, 21, 89 (1995).
[33] H. P. Sava, and J. T. E. McDonnell, Modified forward–backward overdetermined Prony’s method and its application in modeling heart sounds, IEEE Proc.-Vis. Image Signal Process., 142, 375 (1995).
[34] D. V. B. Rao, An explanation to the limitation observed in the Kumaresan–Prony algorithm, IEEE Trans. on Acoustics, Speech, and Signal Processing, ASSP-34, 1338 (1986).
[35] C. Lanczos, Applied Analysis, London (1957).
[36] P. Barone, Some practical remarks on the extended Prony's method of spectrum analysis, Proc. IEEE, 76, 284-285 (1988).
[37] S. Nakamura, Applied Numerical Methods In C, Prentice–Hall (1995).
[38] 李龍昇, “化學微縮製程應用於電子束微影及其阻劑內金屬雜質擴散吸附行為的研究”, 國立清華大學原子科學學系碩士論文, 新竹, 台灣 (2001)。