| 研究生: |
王一婷 Wang, Yi-Ting |
|---|---|
| 論文名稱: |
在數位環境下以整數規劃即時求解生產線多能工之人力配置問題 The Use of Integer Programming Formulation in Solving the Real-time Manpower Allocation Problem for Multi-skilled Workers in Digital Environment |
| 指導教授: |
楊大和
Yang, Ta-Ho |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 人力配置 、多能工 、粗略產能規劃 、整數規劃 |
| 外文關鍵詞: | Integer programming formulation, Manpower allocation, Multi-skilled workers, Rough-cut capacity planning |
| 相關次數: | 點閱:125 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
經濟部技術處在 2019 年指出製造業已由過去的大量生產模式,轉變成少量多
樣、快速反應、彈性製造的生產型態;產業著重發展的內容則是雲端服務、物聯
網、與巨量資料等智慧製造相關的技術發展。許多企業已經具有邁向智慧製造的基
礎-數位化。在具有數位環境的基礎下,訂單可以隨需求波動即時更新,但人力規
劃往往是放在中長期的整體計劃中做決策,鮮少考慮到當日生產線上是否具有足夠
的人員,特別是生產過程需要透過不同的加工技能完成,但人員具有的技能都不完
全相同。因此潛在造成生產過程出現人員工作忙碌不一的情況,讓生產力大幅下
降,無法有效發揮人力資源的彈性。
本研究建立在具有數位環境下的基礎,以達到即時、快速、大量計算的目的,
設計一個粗略產能規劃之人力配置系統,從企業資源規劃(Enterprise resource
planning, ERP)系統中取出每日生產的訂單進行所需產能的即時計算,並將人力資源
導入該系統,且考量其人力資源為多能工,再以整數規劃求解生產線上的多能工人
力配置問題。為了在數位環境下善用數位資源,於系統架構建立了標準工時資料庫
和多能工資料庫,並將其整合在 Excel®,透過 VBA® 程式語言撰寫成一個介面,供
管理者以點擊按鈕方式進行快速且即時性地計算每日生產所需產能,整數規劃求解
過程則是使用 Gurobi®進行每日所需人力配置數量計算,並將結果匯傳回 Excel®,產
出每日人力配置表。ii
該系統透過一個實際案例公司的資料進行建立,其運作可取代管理者紙本撰寫
的過程,減少重複謄寫和填寫錯誤的問題。進一步分析,將人力資源分成「未導入
多能工計劃」與「多能工狀態」進行假說檢定,結果顯示導入多能工計劃可以減少
平均每日配置人數;再將「未導入多能工計劃」與「多能工狀態」、「未導入多能
工計劃」與「全能工狀態」進行連續一個月比較的結果得出,平均每日配置人數分
別有 9%、15%的改善幅度,總人數分別有 13%、12%的實質人力數量節省;最後透
過生產力分析得知,「多能工狀態」與「全能工狀態」可提高 14%的平均生產力。
綜合本研究結果,善用數位資源,可提供管理者更有效地進行決策判斷;人員
進行多能工訓練除了可達到少人化之效益,也能吸收每日需求波動,維持高生產
力,有效發揮人力資源的彈性。
The Technology Division of the Ministry of Economic Affairs pointed out in 2019 that the manufacturing industry has changed from the past mass production to a small, diverse, fast-response, and flexible manufacturing production. The content of the industry's development is cloud services, the Internet of Things, big data, etc. Many companies already have the foundation to move towards smart manufacturing - digitalization. With a digital environment, orders can be updated in real time as demand fluctuation, but manpower planning is often made decisions for aggregate planning in the mid- and long-term. It is rarely considered whether there are enough personnel on the production line on the day or not, especially if the production process needs to be completed through different processing skills but personnel are not exactly have all skills. Therefore, the production process will potentially cause uneven staff work, resulting in a significant decrease in productivity and inability to utilize the flexibility of human resources effectively.
This research is based on the foundation of a digital environment, designing a manpower allocation system of rough-cut capacity planning. The system takes daily production orders from the enterprise resource planning (ERP) system for real time calculation of required capacity, considers human resources as multi-skilled workers, and uses integer programming to solve the problem of multi-skilled workers allocation on the production line in real time. To achieve the purpose of fast, real time, and large-scale calculations, this paper makes good use of digital resources in a digital environment. A standard working hours database and a multi-skilled workers database are established in the system and integrates them in Excel® through VBA® programming language. Managers can quickly and accurately know the required capacity for daily production by clicking the button. The integer programming formulation is solved by Gurobi®, which written in the Spyder® operating environment through the Python® programming language to calculate the number of daily manpower allocations. The results will be returned to Excel® and export a daily manpower allocation table.
The system is verified through the data of an actual case company. Its operation can replace the process of managers writing on paper and reduce the problem of repeated transcription and filled in errors. For further analysis, the human resources are divided into "Multi-skilled workers training plan is not implemented" and "Multi-skilled workers status" for hypothesis verification. Research results show that executed multi-skilled workers training plan can reduce the average daily number of people allocated in the same department. Comparing "Multi-skilled workers training plan is not implemented" and "Multi-skilled workers status" for one consecutive month. Research results show that the average number of people allocated per day has 9% improvement, total number of people has 13% manpower savings. Comparing "Multi-skilled workers training plan is not implemented" and "All-skilled workers status" for one consecutive month. Research results show that the average number of people allocated per day has 15% improvement, total number of people has 12% manpower savings. Finally, through productivity analysis, it is known that "Multi-skilled workers status" and "All-skilled workers status" can increase the average productivity by 14%.
Combining the results of this research, making good use of digital resources can provide managers with more effective decision-making. Multi-skilled workers training can exert effectively in flexibility of human resources to achieve the benefits of Shojinka, absorb daily fluctuations in demand to maintain high productivity.
網頁文獻
Plantation Prestige Fencing (2020). What we offer. Retrieved from https://fencing.plantationprestige.com. December 27, 2020 Accessed.
Lowes (2020). Find the right fencing for every yard at Lowe's. Retrieved from https://www.lowes.com/c/Fencing-gates-Building-supplies. December 27, 2020 Accessed.
Fortress Building Products (2020). Aluminum fencing. Retrieved from https://fortressbp.com/fencing/v2. December 27, 2020 Accessed.
Wikipedia (2018). Aluminum fencing. Retrieved from https://en.wikipedia.org/wiki/Aluminum_fencing. December 27, 2020 Accessed.
Gurobi中國 (2019),Gurobi 最新版本發布,超越自己成為唯一目標,取自http://www.gurobi.cn/NewsView.Asp?id=69 (取得日期:2021年06月12日)。
台灣區家具工業同業公會 (2021),台灣家具進出口報告,取自 http://www.tfma.org.tw/report/2019 (取得日期:2021年03月21日)。
詠勝科技有限公司 (2019),飛輪車開箱,取自 https://www.mobile01.com/topicdetail.php?f=293&t=5922880 (取得日期:2020年12月27日)。
楊大和、李兆華 (2021),精實管理4.0之自働生產管理環,工業工程雜誌,取自 https://sites.google.com/ciie.org.tw/column501/%E7%B2%BE%E5%AF%A6%E7%AE%A1%E7%90%864-0%E4%B9%8B%E8%87%AA%E5%83%8D%E7%94%9F%E7%94%A2%E7%AE%A1%E7%90%86%E7%92%B0?authuser=2 (取得日期:2021年05月10日)。
經濟部統計處 (2020),製造業投資及營運概況調查,取自 https://dmz26.moea.gov.tw/GMWeb/investigate/InvestigateEC.aspx (取得日期:2021年03月21日)。
睿能創意股份有限公司 (2020),打造我的Gogoro,取自 https://store.gogoro.com/tw/scooter?model=gp2abs (取得日期:2020年12月27日)。
維基百科 (2012),計算機輔助工程,取自https://zh.wikipedia.org/wiki/%E8%AE%A1%E7%AE%97%E6%9C%BA%E8%BE%85%E5%8A%A9%E5%B7%A5%E7%A8%8B (取得日期:2020年04月07日)。
中文文獻
石川秀人 (2009),最新圖解豐田生產方式之基本與實踐,中衛發展中心,台北。
柳生俊二 (2008),從單元細胞開始的同期生產方式,中衛發展中心,台北。
經濟部技術處 (2019),2018/2019產業技術白皮書,台灣經濟研究院,台北。
英文文獻
Alony, I. and M. Jones (2008). Lean supply chains, JIT and cellular manufacturing–the human side. Issues in Informing Science and Information Technology, 5, 165-175.
Anderson, D. R., D. J. Sweeney, T. A. Williams, J. D. Camm and J. J. Cochran (2016). Statistics for Business & Economics. Toronto: Nelson Education Ltd.
Attia, A. E. (2013). Prise en compte de la flexibilité des ressources humaines dans la planification et l’ordonnancement des activités industrielles. Ph.D, National Polytechnic Institute of Toulouse.
Bellenguez, O. and E. Néron (2004). Lower bounds for the multi-skill project scheduling problem with hierarchical levels of skills. International Conference on the Practice and Theory of Automated Timetabling, Berlin.
Chryssolouris, G. (2013). Manufacturing Systems: Theory and Practice. Berlin: Springer.
Chryssolouris, G., D. Mavrikios, N. Papakostas, D. Mourtzis, G. Michalos and K. Georgoulias (2009). Digital manufacturing: history, perspectives, and outlook. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 223(5), 451-462.
Coelli, T. J., D. S. P. Rao, C. J. O'Donnell and G. E. Battese (2005). An Introduction to Efficiency and Productivity Analysis. Berlin: Springer.
Dillon, C. (1999). Stretching toward enterprise flexibility with ERP. APICS-The Performance Advantage, 38-43.
Fogarty, D., J. Blackstone and T. Hoffmann (1991). Production and Inventory Management. Cincinnati Ohio: South-Western Publishing Co.
Goudswaard, A. and M. d. Nanteuil (2000). Flexibility and Working Conditions: a Qualitative and Comparative Study in Seven EU Member States. Loughlinstown: European Foundation for the Improvement of Living and Working Conditions.
Hans, E. W. (2003). Resource loading by branch-and-price techniques. Ph.D, Universiteit Twente.
Hopp, W. J. and M. L. Spearman (2011). Factory Physics. Long Grove: Waveland Press Inc.
Hudori, M. (2016). Cable clamp production capacity planning using rough-cut capacity planning (RCCP) method (a case study in PT fajar cahaya cemerlang). Proceeding of 9th International Seminar on Industrial Engineering and Management, Padang.
Karabuk, S. and S. D. Wu (2003). Coordinating strategic capacity planning in the semiconductor industry. Operations Research, 51(6), 839-849.
Krafcik, J. F. (1988). Triumph of the lean production system. Sloan Management Review, 30(1), 41-52.
Lee, J., E. Lapira, B. Bagheri and H. Kao (2013). Recent advances and trends in predictive manufacturing systems in big data environment. Manufacturing Letters, 1(1), 38-41.
Marchwinski, C. and J. Shook (2003). Lean Lexicon: a Graphical Glossary for Lean Thinkers. Boston: Lean Enterprise Institute.
Masmoudi, M. and A. Haït (2012). Fuzzy uncertainty modelling for project planning: application to helicopter maintenance. International Journal of Production Research, 50(13), 3594-3611.
Matt, D. T. and E. Rauch (2020). SME 4.0: the role of small-and medium-sized enterprises in the digital transformation. Industry 4.0 for SMEs, 1.
McKay, K. N. and V. C. Wiers (2006). The human factor in planning and scheduling. In Handbook of Production Scheduling. 89,23-57. Berlin: Springer.
Moller, D. (2016). Guide to Computing Fundamentals in Cyber-physical Systems. Berlin: Springer.
Monden, Y. (2011). Toyota Production System: an Integrated Approach to Just-in-time. Boca Raton: CRC Press.
Porter, M. E. and J. E. Heppelmann (2014). How smart, connected products are transforming competition. Harvard Business Review, 92(11), 64-88.
Ptak, C. A. and E. Schragenheim (2003). ERP: Tools, Techniques, and Applications for Integrating the Supply Chain. Boca Raton: CRC Press.
Rother, M. and R. Harris (2001). Creating Continuous Flow: an Action Guide for Managers, Engineers & Production Associates. Boston: Lean Enterprise Institute.
Schoenthaler, F., D. Augenstein and T. Karle (2015). Design and governance of collaborative business processes in industry 4.0. Proceedings of the Workshop on Cross-organizational and Cross-company BPM (XOC-BPM) Co-located with the 17th IEEE Conference on Business Informatics (CBI 2015), Lisbon.
Smith, A. (1776). The Wealth of Nations. London: W. Strahan, T. Cadell.
Smunt, T. L. (1996). Rough-cut capacity planning in a learning environment. IEEE Transactions on Engineering Management, 43(3), 334-341.
Stecke, K. E. and J. J. Solberg (1981). Loading and control policies for a flexible manufacturing system. The International Journal of Production Research, 19(5), 481-490.
Taylor, F. W. (1911). The Principles of Scientific Management. New York: Harper & Brothers.
Wang, L. and G. Wang (2016). Big data in cyber-physical systems, digital manufacturing and industry 4.0. International Journal of Engineering and Manufacturing (IJEM), 6(4), 1-8.
Wang, P. S., T. h. Yang and M. C. Chang (2017). Effective layout designs for the Shojinka control problem for a TFT-LCD module assembly line. Journal of Manufacturing Systems, 44, 255-269.
Wang, S. M., J. C. Chen and K. J. Wang (2007). Resource portfolio planning of make-to-stock products using a constraint programming-based genetic algorithm. Omega, 35(2), 237-246.
Wickelgren, W. A. (1981). Human learning and memory. Annual Review of Psychology, 32(1), 21-52.
Wortman, J. C., M. J. Euwe, M. TAAL and V. C. S. Wiers (1996). A review of capacity planning techniques within standard software packages. Production Planning & Control, 7(2), 117-128.
Yeung, M. K. (2003). Intelligent process‐planning system or optimal CNC programming–a step towards complete automation of CNC programming. Integrated Manufacturing Systems, 14(7), 593-598.
Yin, Y., K. E. Stecke and D. Li (2018). The evolution of production systems from industry 2.0 through industry 4.0. International Journal of Production Research, 56(1-2), 848-861.
Zülch, G. and M. Becker (2010). A simulation-supported approach for man-machine configuration in manufacturing. International Journal of Production Economics, 125(1), 41-51.
Zhang, Y., P. B. Luh, K. Narimatsu, T. Moriya, T. Shimada and L. Fang (2001). A macro-level scheduling method using Lagrangian relaxation. IEEE Transactions on Robotics and Automation, 17(1), 70-79.
Zobolas, G. I., C. D. Tarantilis and G. Ioannou (2008). Extending capacity planning by positive lead times and optional overtime, earliness and tardiness for effective master production scheduling. International Journal of Production Research, 46(12), 3359-3386.
校內:2024-08-01公開