簡易檢索 / 詳目顯示

研究生: 鄭朝榮
Cheng, Chao-Jung
論文名稱: 具時間延遲之網格型類神經網路的穩定性分析與同步
Stability and Synchronization of Cellular Neural Networks with Time Delays
指導教授: 黃吉川
Hwang, Chi-Chuan
廖德祿
Liao, Teh-Lu
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 111
中文關鍵詞: 網格型類神經網路穩定性混沌同步時間延遲
外文關鍵詞: Synchronization, Delays, Cellular Neural Networks, Stability
相關次數: 點閱:108下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文乃探討具時間延遲之網格型類神經網路(Cellular Neural Networks, CNNs)的穩定性和混沌同步問題。網格型類神經網路是由許多陣列排列的神經元所組成,每個神經元內含非線性動態行為,並應用於解決影像處理和偏微分方程式的問題。因為在應用上,網格型類神經網路是否收歛是必須考量的特性,因此穩定性分析是一重要問題;此外,網格型類神經網路在某些參數情況下能表現出混沌行為,並可應用於安全通訊系統,所以網格型類神經網路之同步亦是一重要問題。

      本論文提出具固定時間延遲之CNNs的全域指數收歛穩定的充分條件,此充分條件不但容易判別且比文獻上的條件更為廣泛。另外,本研究提出具時變時間延遲之CNNs的指數收歛穩定的充分條件,此充分條件和延遲時間相關,乃藉由計算Hamiltonian矩陣(Hamiltonian Matrix)之特徵值是否有根在虛軸上,以判定系統的穩定性,而不需要直接去解複雜的Riccati方程式(Algebraic Riccati Equation),並且由此條件所推導而得的指數收歛速率比文獻上的方法更容易計算。除了探討上述的具時間延遲之Retard型式(Retard Type)的CNNs外,本研究亦提出了具時間延遲微分項之Neutral型式(Neutral Type) CNNs之全域漸近收歛穩定的充分條件。
      
      然而,當CNNs參數無法滿足一些判斷穩定性的充分條件時,我們雖無法判別系統是否穩定,但若適當的選擇CNNs參數(包括系統參數、延遲時間大小等),在有限時間和空間範圍內,透過計算系統的李亞普諾夫指數(Lyapunov Exponent)有一個正值的特性,能夠區分其是否具混沌或非混沌的動態行為。混沌運動對初始條件具有敏感依賴性,研究其同步特性將有益於進一步了解複雜的動態系統行為,例如,可以做為系統通訊安全方面的開發工具。因此,本研究亦根據Pecora 和 Carroll 的drive-response 概念(Drive-Response Concept)以及李亞普諾夫穩定理論、Hamiltonian矩陣,分別針對具固定時間延遲和時變時間延遲之混沌CNNs設計出與其指數同步的耦合系統。在實際應用上,特別是高階的CNNs,若遠端神經元的狀態無法即時取得做為回饋信號時,本研究亦提出了非集中式控制法 (Decentralized Control Technique).

      綜合上述,主要研究成果包括:(一)推導出具固定時間延遲和時變時間延遲之網格型類神經網路穩定性的充分條件,此一結果比文獻上的條件更為廣泛。(二) 針對具固定時間延遲和時變時間延遲之混沌CNNs,設計與其指數同步的耦合系統。(三)針對遠端神經元狀態無法即時取得之高階的混沌CNNs,提出了非集中式控制法。這些結果將可應用於解決實際的問題。

      In this dissertation, the stability and synchronization problems of Cellular Neural Networks (CNNs) with delays are investigated. A new sufficient condition related to the globally exponential stability of CNNs with/without constant delays is proposed. It is shown that the presented condition is easy to check and is less restrictive than some existing sufficient conditions in the literature. Furthermore, we propose the globally exponential stability condition for CNNs with time-varying delays. The condition is delay-dependent and easily applied only by checking the Hamiltonian matrix with no eigenvalues on the imaginary axis instead of directly solving an algebraic Riccati equation. Moreover, the exponential stability degree is more easily assigned than that reported in the literature. In addition, the globally asymptotic stability of a class of delayed neural networks of the neutral type is also investigated.

      On the other hand, chaotic neural networks have recently received attention due to the potential capability for secure communication. It is worthy of noting that CNNs can exhibit some complicated dynamics and even chaotic behaviors if the network’s parameters and time delays are appropriately chosen. Therefore, the synchronization problems of CNNs with/without constant or time-varying delays are investigated in the dissertation. Using the drive-response concept and Lyapunov stability theory or Hamiltonian matrix, several sufficient delay independent and dependent exponential synchronization conditions are derived to synchronize two identical chaotic neural networks with/without constant and time-varying delays, respectively. For practical implementation, we also derive the synchronization law of coupled chaotic CNNs with time delays by decentralized control technique.

    中文摘要 I English Abstract III Acknowledgements V Table of Contents VI List of Figures IX Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Problem Definition 3 1.3 Dissertation Outline 6 Chapter 2 Preliminaries 10 Chapter 3 Globally Exponential Stability of Generalized Cohen-Grossberg Neural Networks with Constant Delays 14 3.1 Stability Criterion of CGNNs with Constant Delays 15 3.2 Illustrative Examples 17 Chapter 4 Globally Exponential Stability Condition of a Class of Neural Networks with Time-Varying Delays 27 4.1 Stability Criteria of CNNs with Time-varying Delays 28 4.2 Illustrative Examples 31 Chapter 5 Globally Asymptotic Stability of a Class of Delayed Neural Networks of Neutral Type 39 5.1 Stability Criteria of Delayed CNNs of Neutral Type 40 5.2 Illustrative Examples 45 Chapter 6 Exponential Synchronization of a Class of Chaotic Neural Networks with Constant Delays 55 6.1 Exponential Synchronization Problem 55 6.2 Exponential Synchronization of CNNs with Constant Delays 56 6.2.1 Controller Design 56 6.2.2 Exponential Synchronization Condition 58 6.3 Illustrative Examples 60 Chapter 7 Exponential Synchronization Condition of a Class of Neural Networks with Time-Varying Delays 68 7.1 Synchronization Problem Formulation 68 7.2 Exponential Synchronization of CNNs with Time-Varying Delays 69 7.3 Illustrative Examples 73 Chapter 8 Synchronization of Chaotic Neural Networks by Decentralized Feedback Control 83 8.1 Synchronization Problem Formulation 83 8.2 Decentralized Controller Design for CNNs with Constant Delays 84 8.3 Illustrative Examples 88 Chapter 9 Conclusions and Future Works 93 9.1 Conclusions 93 9.2 Future Works 95 References 97 自述 110

    [1] M. Cohen and S. Grossberg, “Absolute Stability of Global Pattern
    Formation and Parallel Memory Storage by Competitive Neural Networks,” IEEE Trans. on Systems, Man and Cybernetics, vol. SMC-13, pp. 815-826, Sep. 1983.
    [2] M. C. Carpenter and S. Grossberg, “Computing with Neural Network,” Science, vol. 7, pp. 51-115, 1987.
    [3] B. Kosko, Neural Networks and Fuzzy Systems, Prentice Hall, Englewood Cliffs, NJ, 1992.
    [4] N. Apostlou and R. E. King, “Neuronal State Feedback Learning of Cohen-Grossberg Networks,” Int. J. of Circ. Theor. Appl., vol. 27, pp. 331-338, May 1999.
    [5] L. Wang and X. Zou, “Harmless Delays in Cohen-Grossberg Neural Networks,” Physica D, vol. 170, no. 2, pp. 162-173, Sep. 2002.
    [6] H. Ye, A. N. Michel and K. Wang, “Qualitative Analysis of Cohen-Grossberg Neural Networks with Multiple Delays,” Physical Review E, vol. 51, pp. 2611-2618, 1995.
    [7] L. O. Chua and L. Yang, “Cellular Neural Networks: Theory,” IEEE Trans. Circuits Syst. I, vol. 35, no. 10, pp. 1257-1272, Oct. 1988.
    [8] M. Joy, “On the Global Convergence of a Class of Functional Differential Equations with Applications In Neural Network Theory,” J. of Mathematical Analysis and Applications, vol. 232, no.1, pp. 61-81, Apr. 1999.
    [9] L. Wang and X. Zou, “Exponentially Stability of Cohen-Grossberg Neural Networks,” Neural Networks, vol. 15, pp. 415-422, Apr. 2002.
    [10] J. H. Li, A. N. Michel, and W. Porod, “Qualitative Analysis and Synthesis of a Class of Neural Networks,” IEEE Trans. Circuits Syst. I, vol. 35, no. 8, pp. 976-986, Aug. 1988.
    [11] D. Zhou and J. Cao, “Globally Exponential Stability Conditions for Cellular Neural Networks with Time-Varying Delays,” Applied Mathematics and Computation, vol. 131, pp. 487-496, Sep. 2002.
    [12] S. Arik, “Stability Analysis of Delayed Neural Networks,” IEEE Trans. Circuits Syst. I, vol. 47, no. 7, pp. 1089-1092, Jul. 2000.
    [13] J. Cao, “Global Stability Conditions for Delay CNNs,” IEEE Trans. Circuits Syst. I, vol. 48., no. 11, pp. 1330-1333, Nov. 2001.
    [14] Y. J. Cao and Q. H. Wu, “A Note on Stability of Analog Neural Networks with Time Delays,” IEEE Trans. Neural Network, vol. 7, pp. 1533-1535, 1996.
    [15] P. Baldi and A. F. Atiya, “How Delays Affect Neural Dynamics and Learning,” IEEE Trans. Neural Network, vol. 5, no. 4, pp. 612-621, Jul. 1994.
    [16] S. Mohamad and K. Gopalsamy, “Exponential Stability of Continuous-time and Discrete-time Cellular Neural Networks with Delays,” Applied Mathematics and Computation, vol. 135, pp. 17-38, Feb. 2003.
    [17] J. Cao, “Periodic Solutions and Exponential Stability in Delayed Cellular Neural Networks,” Physical Review E, vol. 60, pp. 3244-3248, 1999.
    [18] J. J. Hopfield, “Neural Networks and Physical Systems with Emergent Collective Computational Abilities,” Proceedings of the National Academy of Sciences, USA, vol. 79, pp. 2554-2558, 1982.
    [19] D. G. Kelly, “Stability in Contractive Nonlinear Neural Networks,” IEEE Trans. Biomed. Eng., vol. 37, no. 3, pp. 231-242, 1990.
    [20] G. J. Yu, C. Y. Lu, S. H. Tsai, T. J. Su, and B. D. Liu, “Stability of Cellular Neural Networks with Time-Varying Delay,” IEEE Trans. Circuits Syst. I, vol. 50, no. 5, pp. 677- 678, 2003.
    [21] E. Yucel and S. Arik, “New Exponential Stability Results for Delayed Neural Networks with Time Varying Delays,” Physica D, vol. 191, pp. 314-322, 2004.
    [22] S. Guo and L. Huang, “Stability Analysis of a Delayed Hopfield Neural Network,” Physical Review E, vol. 67, 061902, 2003.
    [23] D. Zhou, L. Zhang, and J. Cao, “On Global Exponential Stability of Cellular Neural Networks with Lipschitz-continuous Activation Function and Variable Delays,” Applied Mathematics and Computation, vol. 151, pp. 379-392, 2004.
    [24] X. Liao, G. Chen, and E. N. Sanchez, “Delay-dependent Exponential Stability Analysis of Delayed Neural Networks: an LMI Approach,” Neural Networks, vol. 15, pp. 855-866, 2002.
    [25] W. H. Chen, Z. H. Guan, and X. Lu, “Delay-dependent Exponential Stability of Neural Networks with Variable Delays,” Physics Letters A, vol. 326, pp. 355-363, 2004.
    [26] J. H. Li, A. N. Michel, and W. Porod, “Qualitative Analysis and Synthesis of a Class of Neural Networks,” IEEE Trans. Circuits Syst. I, vol. 35, no. 10, pp. 976-986, Oct. 1988.
    [27] H. J. Jiang and Z. D. Teng, “Global Eponential Stability of Cellular Neural Networks with Time-Varying Coefficients and Delays,” Neural Networks, vol. 17, no. 10, pp. 1415-1425, 2004.
    [28] L. O. Chua and L. Yang, “Cellular Neural Networks: Applications,” IEEE Trans. Circuits Syst. I, vol. 35, no. 10, pp. 1273-1290, Oct. 1988.
    [29] W. L. Lu and T. P. Chen, “New Conditions on Global Stability of Cohen-Grossberg Neural Networks,” Neural Computation, vol. 15, no. 5, pp. 1173-1189, 2003.
    [30] T. P. Chen and S. I. Amari, “Stability of Asymmetric Hopfield Networks,” IEEE Trans. Neural Networks, vol. 12, no. 1, pp. 159-163, 2001.
    [31] T. P. Chen and L. B. Rong, “Delay-independent Stability Analysis of Cohen-Grossberg Neural Networks,” Physics Letters A, vol. 317, no. 5-6, pp. 436-449, 2003.
    [32] M. Basu, “Hopfield Neural Networks for Optimal Scheduling of Fixed head Hydrothermal Power Systems,” Electric Power Systems Research, vol. 64, no. 1, pp. 11-15, 2003.
    [33] Z. G. Liu and L. S. Liao, “Existence and Global Exponential Stability of Periodic Solution of Cellular Neural Networks with Time-Varying Delays,” J. of Mathematical Analysis and Applications, vol. 290, no. 1, pp. 247-262, 2004.
    [34] G. Costantini, D. Casali, and R. Perfetti, “Cellular Neural Network Template for Rotation of Grey-Scale Images,” Electronics Letters, vol. 39, no. 25, pp. 1803-1805, 2003.
    [35] P. Arena, M. Bucolo, L. Fortuna, and L. Occhipinti, “Cellular Neural Networks for Real-Time DNA Microarray Analysis,” IEEE Trans. Biomed. Eng., vol. 21, no. 2, pp. 17-25, 2002.
    [36] L. O. Chua, L. Yang, and K. R. Krieg, “Signal Processing Using Cellular Neural Networks,” J. of VLSI Signal Processing, vol. 3, pp. 25-51, 1991.
    [37] K. R. Crounse and L. O. Chua, “Methods for Image Processing and Pattern Formation in Cellular Neural Networks: a Tutorial,” IEEE Trans. Circuits Syst. II, vol. 42, pp. 583-601, 1995.
    [38] T. L. Liao and F. C. Wang, “Global Stability for Cellular Neural Networks with Delay”, IEEE Trans. on Neural Networks, vol. 11, no.6, pp. 1481-1484, 2000.
    [39] P. Arena, S. Baglio, L. Fortuna, and G. Manganaro, “Self-Organization in a Two-Layer CNN,” IEEE Trans. Circuits Syst. I, vol. 45, no. 2, pp. 157-162, 1998.
    [40] Z. Wang, J. Lam, and K. J. Burnham, “Stability Analysis and Observer Design for Neutral Delay Systems,” IEEE Trans. Automatic Control, vol. 47, no. 3, pp. 478-483, Mar. 2002.
    [41] I. D. Clarkson and D. P. Goodall, “On the Stabilizability of Imperfectly Known Nonlinear Delay Systems of the Neutral Type,” IEEE Trans. Automatic Control, vol. 45, no.12, pp. 2326-2331, Dec. 2000.
    [42] A. P. Tchangani, M. Dambrine, and J. P. Richard, “Stability, Attraction Domains, and Ultimate Boundedness for Nonlinear Neutral Systems,” Math. Comp. Simulation, vol. 45, pp. 291-298, Feb. 1998.
    [43] A. Bellen, N. Guglielmi, and A. E. Ruehli , “Methods for Linear Systems of Circuit Delay Differential Equations of Neutral Type,” IEEE Trans. Circuits Syst. I, vol. 46, no. 1, pp. 212-215, Jan. 1999.
    [44] R. P. Agarwal and S. R. Grace, “Asymptotic Stability of Differential Systems of Neutral Type,” Applied Mathematics Letters, vol. 13, no. 8, pp. 15-19, Nov. 2000.
    [45] R. P. Agarwal and S. R. Grace, “Asymptotic Stability of Certain Neutral Differential Equations,” Mathematical and Computer Modelling, vol. 31, no. 8, pp. 9-15, Apr. 2000.
    [46] Y. Zhang, “Stability of Neural Lotka-Volterra Systems,” Journal of Mathematical Analysis and Applications, vol. 199, no. 2, pp. 391-402, Apr. 1996.
    [47] F. Zou and J. A. Nossek, “Bifurcation and Chaos in Cellular Neural Networks,” IEEE Trans. Circuits Syst. I, vol. 40, no. 3, pp. 166-173, 1993.
    [48] M. Gilli, “Strange Attractors in Delayed Cellular Neural Networks,” IEEE Trans. Circuits Syst. I, vol. 40, no. 11, pp. 849-853, 1993.
    [49] H. T. Lu, “Chaotic Attractors in Delayed Neural Networks,” Physics Letters A, vol. 298, pp. 109-116, 2002.
    [50] L. M. Pecora and T. L. Carroll, “Synchronization in Chaotic Systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824, 1990.
    [51] T. L. Carroll and L. M. Pecora, “Synchronization Chaotic Circuits,” IEEE Trans. Circuits Syst. I, vol. 38, no.4, pp. 453-456, 1991.
    [52] C. Hartley and F. Mossayebi, “Chaotic Dynamics of the Driven Chua’s Circuit,” Int. J. of Bifurcation and Chaos, vol. 2, pp. 881-885, 1991.
    [53] G. Chen and X. Dong, “On Feedback Control of Chaotic Continuous-Time Systems,” IEEE Trans. Circuits Syst. I, vol. 40, pp. 591-601, 1993.
    [54] C. W. Wu and L. O. Chua, “A Unified Framework for Synchronization and Control of Dynamical Systems,” Int. J. of Bifurcation and Chaos, vol. 4, no. 4, pp. 979-98, 1994.
    [55] P. Thangavel, K. Murali, and M. Lakshmanan, “Bifurcation and Controlling of Chaotic Delayed Cellular Neural Networks,” Int. J. of Bifurcation and Chaos, vol. 8, no. 12, pp. 2481-2492, 1998.
    [56] R. Hendrik, “Controlling Chaotic Systems with Multiple Strange Attractors,” Physics Letters A, vol. 300, pp. 182-188, 2002.
    [57] X. Yu, “Controlling Chaos Using Input-Output Linearization Approach,” Int. J. of Bifurcation and Chaos, vol. 7, pp. 1659-1664, 1997.
    [58] M. D. Bernardo, “An Adaptive Approach Control and Synchronization of Sontinuous-Time Chaotic Systems,” Int. J. of Bifurcation and Chaos, vol. 6, pp. 557-568, 1996.
    [59] G. P. Jiang, K. S. Tang, and G. Chen, “A Simple Global Synchronization Criterion for Coupled Chaotic Systems,” Chaos Solitons & Fractals, vol. 15, pp. 925-935, 2003.
    [60] G. Rangarajan and M. Ding, “Stability of Synchronized Chaos in Coupled Dynamical Systems,” Physics Letters A, vol. 296, pp. 204-209, 2002.
    [61] H. Yu and Y. Liu, “Chaotic Synchronization Based on Stability Criterion of Linear Systems,” Physics Letters A, vol. 314, pp. 292-298, 2003.
    [62] G. Grassi and S. Mascolo, “Synchronizing High Dimensional Chaotic Systems via Eigenvalue Placement with Application to Cellular Neural Networks,” Int. J. of Bifurcation and Chaos, vol. 9, no. 4, pp. 705-711, 1999.
    [63] F. Liu, Y. Ren, X. Shan, and Z. Qiu, “A Linear Feedback Synchronization Theorem for a Class of Chaotic Systems,” Chaos Solitons & Fractals, vol. 13, no. 4, pp. 723-730, 2002.
    [64] T. L. Liao and S. H. Tsai, “Adaptive Synchronization of Chaotic Systems and its Application to Secure Communications,” Chaos Solitons & Fractals, vol. 11, no. 9, pp. 1387-1396, 2000.
    [65] S. Sundar and A. A. Minai, “Synchronization of Randomly Multiplexed Chaotic Systems with Application to Communication,” Physical Review Letters, vol. 85, pp. 5456-5459, 2000.
    [66] M. Feki, “An Adaptive Chaos Synchronization Scheme Applied to Secure Communication,” Chaos Solitons & Fractals, vol. 18, pp. 141-148, 2003.
    [67] A. Bose, N. Kopell, and D. Terman, “Almost-Synchronous Solutions for Mutually Coupled Excitatory Neurons,” Physica D, vol. 140, no. 1-2, pp. 69-94, 2000.
    [68] W. L. Lu and T. P. Chen, “Synchronization of Coupled Connected Neural Networks with Delays,” IEEE Trans. Circuits Syst. I, vol. 51, no. 12, pp. 2491-2503, 2004.
    [69] X. Gong and C. H. Lai, “On the Synchronization of Different Chaotic Oscillators,” Chaos Solitons & Fractals, vol. 11, no. 8, pp. 1231-1235, 2000.
    [70] P. F. Curran, J. Suykens, and L. O. Chua, “Absolute Stability Theory and Master-Slave Synchronization,” Int. J. of Bifurcation and Chaos, vol. 7, no. 12, pp. 2891-2896, 1997.
    [71] X. Liao and G. Chen, “On Feedback-Controlled Synchronization of Chaotic Systems,” Int. J. Systems Science, vol. 34, no. 7, pp. 453-461, 2003.
    [72] T. Yang, L. B. Yang, and C. M. Yang, “Application of Neural Networks to Unmasking Chaotic Secure Communication,” Physica D, vol. 124, no. 1-3, pp. 248-257, 1998.
    [73] J. Lu, X. Yu, and G. Chen, “Chaos Synchronization of General Complex Dynamical Networks,” Physica A, vol. 334, pp. 281-302, 2004.
    [74] C. Wang and S. S. Ge, “Synchronization of Two Uncertain Chaotic Systems via Adaptive Backstepping,” Int. J. of Bifurcation and Chaos, vol. 11, pp. 1743-1751, 2001.
    [75] K. Y. Lian, P. Liu, T. S. Chiang, and C. S. Chiu, “Adaptive Synchronization Design for Chaotic Systems via a Scalar Driving Signal,” IEEE Trans. Circuits Syst. I, vol. 49, pp. 17-27, 2002.
    [76] E. Ott, C. Grebogi, and J. A. Yorke, “Controlling Chaos,” Physical Review Letters, vol. 64, pp. 1196-1199, 1990.
    [77] H. Zhang, X. K. Ma, and W. Z. Liu, “Synchronization of Chaotic Systems with Parametric Uncertainty Using Active Sliding Mode Control,” Chaos Solitons & Fractals, vol. 21, no. 5, pp. 1249-1257, 2004.
    [78] Y. Song and J. Wei, “Bifurcation Analysis for Chen’s System with Delayed Feedback and its Application to Control of Chaos,” Chaos, Solitons & Fractals, vol. 22, pp. 75-91, 2004.
    [79] D. Reddy, A. Sen, and G. Johnston, “Dynamics of a Limit Cycle Oscillator Under Time Delayed Linear and Nonlinear Feedbacks,” Physica D, vol. 144, pp. 335-357, 2000.
    [80] M. Yeung and S. Strogatz, “Time Delay in the Kuramoto Model of Coupled Oscillators,” Physical Review Letters, vol. 82, pp. 648-651, 1999.
    [81] X. Guan, C. Chen, Z. Fan, and H. Peng, “Time-Delay Feedback Control of Time-Delay Chaotic Systems,” Int. J. of Bifurcation and Chaos, vol.13, pp. 193-205, 2003.
    [82] G. Chen, J. Zhou, and Z. Liu, “Global Synchronization of Coupled Delayed Neural Networks and Application to Chaotic CNN Models,” Int. J. of Bifurcation and Chaos, vol. 14, no.7, pp. 2229-2240, 2004.
    [83] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Publishers, Dordrecht, The Netherland, 1992.
    [84] H. K. Khalil, Nonlinear Systems, Macmillan Publishing Company, New York, 1992.
    [85] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, “State-Space Solutions to Standard and Control Problems,” IEEE Trans. Automatic Control, vol. 34, pp. 831–847, 1989.
    [86] K. K. Shyu and J. J. Yan, “Robust Stability of Uncertain Time-Delay Systems and its Stabilization by Variable Structure Control,” Int. J. Control, vol. 57, no. 1, pp. 237-246, 1993.
    [87] C. C. Hwang, C. J. Cheng, and T. L. Liao, “Globally Exponential Stability of Generalized Cohen–Grossberg Neural Networks with Delays,” Physics Letters A, vol. 319, no. 1-2, pp. 157-166, 2003.
    [88] J. J. Yan, T. L. Liao, C. J. Cheng, and C. C. Hwang, “Globally Exponential Stability Condition of a Class of Neural Networks with Time-Varying Delays,” Physics Letters A, vol. 339, pp. 333-342, 2005.
    [89] C. J. Cheng, T. L. Liao, and C. C. Hwang, “Globally Asymptotic Stability of a Class of Delayed Neural Networks of Neutral Type,” submitted to IEEE Trans. on Systems, Man and Cybernetics, Part B, 2005.
    [90] C. J. Cheng, T. L. Liao, and C. C. Hwang, “Exponential Synchronization of a Class of Chaotic Neural Networks,” Chaos, Solitons & Fractals, vol. 24, pp. 197-206, 2005.
    [91] C. J. Cheng, T. L. Liao, J. J. Yan, and C. C. Hwang, “Exponential Synchronization of a Class of Neural Networks with Time-Varying Delays,” submitted to IEEE Trans. on Systems, Man and Cybernetics, Part B, 2005. (minor revision)
    [92] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining Lyapunov Exponents from a Time Series,” Physica D, vol. 16, pp. 285-317, 1985.
    [93] C. J. Cheng, T. L. Liao, J. J. Yan, and C. C. Hwang, “Synchronization of Neural Networks by Decentralized Feedback Control,” Physics Letters A, vol. 338, pp. 28-35, 2005.
    [94] D. F. Stout and M. Kaufman, Handbook of Operational Amplifier Circuit Design, Mcgraw-Hill, New York, 1976.
    [95] P. K. Das II, W. C. Schieve, and Z. J. Zeng, “Chaos in an Effective Four-Neuron Neural Network,” Physics Letters A, vol. 161, pp. 60-66, 1991.

    下載圖示 校內:2006-07-05公開
    校外:2008-07-05公開
    QR CODE