簡易檢索 / 詳目顯示

研究生: 蘇柏松
Su, Po-Sung
論文名稱: 具週期陣列及氧化鎵鋅/氧化銦鎵鋅薄膜於可撓反置高分子白光發光二極體之研究
Investigation of Flexible Inverted Polymer White LED with GZO/IGZO Film and Periodic Array
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 79
中文關鍵詞: 量子點反置白光高分子發光二極體可撓基板雷射干涉微影
外文關鍵詞: quantum dots, inverted white light polymer light-emitting diodes, flexible substrate, laser interference lithography
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主動層使用高分子材料PVK(聚(N-乙烯咔唑))以及CdSe/ZnS核殼結構量子點來製作白光有機高分子發光二極體,元件本身為反置結構,透過調變不同尺寸量子點材料來混合出最好的白光比例,並利用CIE色度座標圖來驗證。元件基板選用PET(polyethylene terephthalate)軟性基板為底,陰極IGZO薄膜以及電子傳輸層GZO薄膜均使用磁控式射頻濺鍍系統來鍍製,得到最佳白光比例之後,再探討不同厚度電子傳輸層對於元件發光效率之影響,並使用雷射干涉微影技術將基板表面進行微影化製程,透過沉積不同週期SiO2陣列來使元件表面粗糙化,提升電流注入效率,讓電子電洞於發光層複合機率相對提高。其中當加入週期為2 µm的陣列時,元件有一最佳效率3.01 cd/A,其最大發光亮度可達7016 cd/m2。

    The emitting layer of this study used poly (N-vinylcarbazole) (PVK) and CdSe/ZnS core-shell quantum dots to fabricate white organic polymer light-emitting diodes. The device itself is an inverted structure. By modulating different size of quantum dots to get the best ratio of white light and verified it through CIE chromaticity coordinates. The substrate is PET (polyethylene terephthalate) which is plastic material. Cathode film (IGZO) and electron transport layer (GZO) were all deposited by Radio frequency magnetron sputtering system. After the optimal white light ratio is obtained, then tried to investigate the influence of different thickness in electron transport layer for luminous efficiency and used He-Cd laser interference lithography system to lithography the surface of substrate. Through different periodic SiO2 arrays deposited so that result in roughening the surface in order to increase the injection of current that make it easier for electron and electron hole recombinating. With 2 µm SiO2 periodic arrays added, the white organic polymer light-emitting diodes had the best luminous efficiency of 3.01cd/A and the maximum luminous brightness reached to 7016 cd/m2.

    摘要 I Abstract II 致謝 VII 目錄 VIII 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 白光有機發光二極體 2 1.3 量子點發光二極體 3 1.4 可撓式基板(PET) 4 1.5 研究動機與目的 5 參考文獻 8 第二章 原理 11 2.1 有機發光二極體元件結構 11 2.2 有機發光二極體操作原理 13 2.3 有機材料的吸收與放射 14 2.4 主客體發光機制 15 2.5 元件電流注入機制 16 2.6 量子侷限效應 19 2.7 量子穿隧效應 20 2.8 雷射干涉微影技術 20 參考文獻 28 第三章 實驗方法與步驟 31 3.1 實驗架構 31 3.2 實驗材料 31 3.2-1 抗水氣層材料 31 3.2-2 陰極薄膜材料 32 3.2-3 電子傳輸層材料 32 3.2-4 發光層材料 32 3.2-5 電洞傳輸層材料 33 3.2-6 金屬電極材料 33 3.3 實驗流程 34 3.3-1 基板清潔&SiO2沉積 34 3.3-2 SiO2週期陣列製備 35 3.3-3 IGZO薄膜製作&圖案化 35 3.3-4 電子傳輸層製作 36 3.3-5 發光層配製 37 3.3-6 發光層塗佈 37 3.3-7 電洞傳輸層製作 37 3.3-8 金屬電極蒸鍍 38 3.4 量測儀器 38 3.4-1 掃描式電子顯微鏡 38 3.4-2 光激發光光譜儀 39 3.4-3 輝度量測系統 39 參考文獻 54 第四章 量測分析與結果討論 56 4.1 白光有機發光二極體基本特性量測 56 4.1-1 白光調配 56 4.1-2 共濺鍍IZO及Ga2O3形成IGZO薄膜之電性分析 57 4.1-3 不同功率ZnO對GZO傳輸層薄膜之電性影響 57 4.2-1 GZO薄膜厚度對元件之電性影響 58 4.2-2 GZO薄膜厚度對元件之發光亮度影響 58 4.2-3 GZO薄膜厚度對元件之發光效率與CIE座標影響 59 4.3 具SiO2週期陣列結構之元件特性量測 60 4.3-1 不同SiO2週期陣列表面型態 60 4.3-2 具不同SiO2週期陣列元件之電性影響 60 4.3-3 具不同SiO2週期陣列元件之發光亮度影響 60 4.3-4 具不同SiO2週期陣列元件之發光效率影響 61 4.4 元件水氣穿透率與壽命量測 62 參考文獻 77 第五章 結論 78

    第一章
    [1] L. Su, X. Y. Zhang, Y. Zhang, and A. L. Rogach, “Recent progress in quantum dot based white light-emitting devices,” Top. Curr. Chem., vol. 374, pp. UNSP 42 -1- UNSP 42 -25, 2016.
    [2] Y. H. Kim, K. W. Cheah, and W. Y. Kim, “High efficient white organic light-emitting diodes with single emissive layer using phosphorescent red, green, and blue dopants,” Appl. Phys. Lett., vol. 103, pp. 053307-1-053307-4, 2013.
    [3] H. Y. Chu, J. I. Lee, L. M. Do, T. Zyung, B. J. Jung, H. K. Shim, and J. Jang, “Organic white light emitting devices with an RGB stacked multilayer structure,” Mol. Cryst. Liq. Cryst., vol. 405, pp. 119-125, 2003.
    [4] T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nature Photon., vol. 5, pp. 176-182, 2011.
    [5] B. O. Dabbousi, J. R. Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem., vol. 101, pp. 9463-9475, 2006.
    [6] G. Cheng, Y. F. Zhang, Y. Zhao, Y. Y. Lin, C. Y. Ruan, S. Y. Liu, T. Fei, Y. G. Ma, and Y. X. Cheng, “White organic light-emitting devices with a phosphorescent multiple emissive layer,” Appl. Phys. Lett., vol. 89, pp 043504-1-043504-3, 2006.
    [7] D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett., vol. 6, pp. 1880-1886, 2006.
    [8] K. H. Lee, C. Y. Han, H. D. Kang, H. Ko, C. Lee, J. Lee, N. Myoung, S. Y. Yim, and H. Yang, “Highly efficient, color-reproducible full-color electroluminescent devices based on red/green/blue quantum dot-mixed multilayer,” ACS., vol. 9, pp. 10941-10949, 2015.
    [9] J. H. Kwak, W. K. Bae, D. G. Lee, I. S. Park, M. J. Park, H. D.Cho, H. J. Woo, D. Y. Yoon, K. K. Char, S. H. Lee, and C. H.Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure,” Nano Lett., vol. 12, pp. 2362-2366, 2012.
    [10] Y. G. Tropsha and N. G. Harvey, “Activated rate theory treatment of oxygen and water transport through silicon oxide poly(ethylene terephthalate) composite barrier structures,” J. Phys. Chem. B, vol. 101, pp. 2259-2266, 1997.
    第二章
    [1] J. Lee, B. J. Jung, J. I. Lee, H. Y. Chu, L. M. Do, and H. K. Shim, “Modification of an ITO anode with a hole-transporting SAM for improved OLED device characteristics,” J. Mater. Chem., vol. 12, pp. 3494-3498, 2002.
    [2] C. Shen, I. G. Hill, and A. Kahn, “Role of electrode contamination in electron injection at Mg:Ag/ Alq3 interfaces,” Adv. Mater., vol. 11, pp. 1523-1527, 1999.
    [3] D. R. Baigent, R. N. Marks, N. C. Greenham, R. H. Friend, S. C. Moratti, and A. B. Holmes, “Conjugated polymer light‐emitting diodes on silicon substrates,” Appl. Phys. Lett., vol. 65, pp. 2636-2638, 1994.
    [4] J. H. Lee and J. J Kim, “Electron injection, and transport for high-performance inverted organic light-emitting diodes,” J Inf Disp., vol. 14, pp. 39-48, 2013.
    [5] M. Takada, T. Kobayashi, T. Nagase, and H. Naito, “Inverted organic light-emitting diodes using different transparent conductive oxide films as a cathode,” Jpn. J. Appl. Phys., vol. 55, pp. 03DC06-1-03DC06-3, 2016.
    [6] H. Arora, P. E. Malinowski, A. Chasin, D. Cheyns, S. Steudel, S. Schols, and P. Heremans, “Amorphous indium-gallium-zinc-oxide as electron transport layer in organic photodetectors,” Appl. Phys. Lett., vol. 106, pp. 143301-1-143301-4, 2015.
    [7] L. H. Campbell, D. L. Smith, S. Tretiak, R. L. Martin, C. J. Neef, and J. R. Ferraris, “Excitation transfer processes in a phosphor-doped poly(p-phenylene vinylene) light-emitting diode,” Phys. Rev. B: Condens. Matter, vol. 65, pp. 085210-1-085210-8, 2002.
    [8] P. M. W. Blom, C. Tanase, D. M. de Leeuw, and R. Coehoorn, “Thickness scaling of the space-charge-limited current in poly(p-phenylene vinylene),” Appl. Phys. Lett., vol. 86, pp. 092105-1-092105-3, 2005.
    [9] P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster, “Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene),” Phys. Rev. B: Condens. Matter, vol. 55, pp. R656-R659, 1997.
    [10] F. W. Wise, “Lead salt quantum dots: The limit of strong quantum confinement,” Acc. Chem. Res., vol. 33, pp. 773-780, 2000.
    [11] Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics, vol. 7, pp. 13-23, 2013.
    [12] Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd., vol. 449, pp. 261-264, 2006.
    第三章
    [1] J. W. Han, H. J. Kang, J. H. Kim, and D. S. Seo, “Effects of defects in SiO2 thin films prepared on polyethylene terephthalate by high-temperature e-beam deposition,” Jpn. J. Appl. Phys., Part 2, vol. 45, pp. L827-L829, 2006.
    [2] M. Takada, T. Kobayashi, T. Nagase, and H. Naito, “Inverted organic light-emitting diodes using different transparent conductive oxide films as a cathode,” Jpn. J. Appl. Phys, vol. 55, pp. 03DC06-1-03DC06-3, 2016.
    [3] L. Gong, J. G. Lu, and Z. Z. Ye, “Transparent and conductive Ga-doped ZnO films grown by RF magnetron sputtering on polycarbonate substrates,” Sol. Energy Mater. Sol. Cells, vol. 94, pp. 937-941, 2010.
    [4] X. J. Zhang, C. Y. Jiang, Y. Q. Mo, Y. H. Xu, H. H. Shi, and Y. Cao, “High-efficiency blue light-emitting electrophosphorescent device with conjugated polymers as the host,” Appl. Phys. Lett., vol. 88, pp. 051116-1- 051116-3, 2006.
    [5] Y. Nakayama, K. Morii, Y. Suzuki, H. Machida, S. Kera, N. Ueno, H. Kitagawa, Y. Noguchi, and H. Ishii, “Origins of improved hole-injection efficiency by the deposition of MoO3 on the polymeric semiconductor poly (dioctylfluorene-alt-benzothiadiazole),” Adv. Funct. Mater., vol. 19, pp. 3746-3752, 2009.
    [6] K. S. Yook and J. Y. Lee, “Low driving voltage in organic light-emitting diodes using MoO3 as an interlayer in hole transport layer,” Synth. Met., vol. 159, pp. 69-71, 2009.
    第四章
    [1] J. H. Hu and R. G. Gordon, “Atmospheric pressure chemical vapor deposition of gallium doped zinc oxide thin films from diethyl zinc, water, and triethyl gallium,” J. Appl. Phys., vol. 72, pp. 5381-5392, 1992.
    [2] D. H. Kim, J. Y. Kim, D. Y. Kim, J. H. Han, and K. C. Choi, “Solution-based nanostructure to reduce waveguide and surface plasmon losses in organic light-emitting diodes,” Org. Electron., vol. 15, pp. 3183-3190, 2014.

    無法下載圖示 校內:2023-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE