簡易檢索 / 詳目顯示

研究生: 陸尋
Lu, Xun
論文名稱: 三級Beta型低溫式史特靈冷凍機之實驗及數值研究
Experimental and Numerical Study of Three-Stage Beta-Type Stirling Cryocooler
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程國際碩博士學位學程
International Master/Doctoral Degree Program on Energy Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 76
外文關鍵詞: Beta-type Stirling cryocooler, three-stage cryocooler, multi-stage cryocooler, thermodynamic model, cryogenics
相關次數: 點閱:53下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The present study focuses on the development and performance analysis of a three-stage beta-type Stirling cryocooler. The objective is to expand a single-stage cryocooler into three-stage and analyze the effect of such expansion into multi-stage with a performance comparison of the two cryocoolers. A thermodynamic model is developed and validated with experimental results. The numerical model is useful for examining the effect of relevant parameters of the cryocooler and could be utilized for further development of multi stage cryocoolers. The cryocooler achieved a no-load temperature of 90.0 K at rotation speed of 700 rpm and a charge pressure of 2 bar. With a heat load applied on the third stage only, the cryocooler reached a temperature of 116.6 K, with a cooling capacity of 1 W, yielding a relative COP of 0.52 % at 2 bar, 600 rpm.

    Abstract I Acknowledgements II Table of Contents III List of Tables V List of Figures VI NOMENCLATURE IX CHAPTER 1. INTRODUCTION 1 1.1 Stirling Cryocooler 1 1.2 Literature Review 2 1.3 Mechanism Principle 4 1.4 Research Objective 6 CHAPTER 2. EXPERIMENTAL SETUP 7 2.1 The three-stage cryocooler 7 2.2 Auxiliary equipment and data acquisition 12 2.3 Experimental Conditions 19 CHAPTER 3. NUMERICAL MODELING 22 3.1 Thermodynamic Model 22 3.2 Driving mechanism 25 3.3 Volume, mass, pressure 26 3.4 Regenerator flow 29 3.5 Temperature 32 CHAPTER 4. RESULTS AND DISCUSSION 34 4.1 Experiment without heat load 34 4.2 Experiment with heat load 42 4.3 Numerical results 49 4.4 Comparison with single-stage cryocooler 54 CHAPTER 5. CONCLUSIONS 57 References 58

    [1] R. G. Ross Jr and R. F. Boyle, "An Overview of NASA Space Cryocooler Programs--2006." International Cryocooler Conference, 2007.
    [2] R. Radenbaugh, "Refrigeration for superconductors." Proceedings of the IEEE, vol. 92, no. 10, pp. 1719-1734, 2004.
    [3] T. Rawlings, Numerical modelling of Stirling cryocoolers. Ph.D. dissertation, UCL (University College London), 2022.
    [4] H. S. Cao, and H. J. M. Ter Brake, "Progress in and outlook for cryogenic microcooling." Physical Review Applied, vol. 14, no. 4, p. 044044, 2020.
    [5] C. F. Song, Y. Kitamura, and S. H. Li, "Evaluation of Stirling cooler system for cryogenic CO2 capture." Applied energy, vol. 98, pp. 491-501, 2012.
    [6] M. D. Atrey, Ed., Cryocoolers: theory and Applications. Springer Nature, 2020.
    [7] G. Walker, Cryocoolers: Part 1: Fundamentals. Springer, 2014.
    [8] R. G. Ross, Ed., Cryocoolers 11. Kluwer Academic, 2001.
    [9] A. C. Kirk, "On the mechanical production of cold (includes plates and appendix)." Minutes of the Proceedings of the Institution of Civil Engineers, vol. 37, no. 1874, Thomas Telford-ICE Virtual Library, 1874.
    [10] K. H. Jang, H. S. Kim, and S. H. Lee, "Numerical analysis of free-piston stirling cooler systems for improving cooling performance." Case Studies in Thermal Engineering, vol. 37, p. 102272, 2022.
    [11] B. Kongtragool and S. Wongwises, "A review of solar-powered Stirling engines and low temperature differential Stirling engines." Renewable and Sustainable energy reviews, vol. 7, no. 2, pp. 131-154, 2003.
    [12] G. Claude, Liquid Air, Oxygen, Nitrogen. P. Blakiston’s Son & Company, 1913.
    [13] Z. Yang, S. Liu, Z. Li, Z. Jiang, and C. Dong, "Application of machine learning techniques in operating parameters prediction of Stirling cryocooler." Cryogenics, vol. 113, p. 103213, 2021.
    [14] W. Wu, X. Cui, S. Liu, Z. Jiang, J. Song, and Y. Wu, "Cooling performance improvement of a two-stage pulse tube cryocooler with Er-plated screen as regenerator material." International Journal of Refrigeration, vol. 131, pp. 615-622, 2021.
    [15] R. Xue, J. Tan, B. Zhao, Y. Zhao, H. Tan, S. Wu, Y. Zhai, D. Ma, D. Wu, H. Dang, "Thermodynamic characteristics of a single-stage stirling-type pulse tube cryocooler capable of 1220 W at 77 K with two cold fingers driven by one linear compressor." Energy, vol. 278, p. 127968, 2023.
    [16] B. Wang, Y. Chao, H. Wang, Q. Zhao, D. Liu, & Z. Gan, "A miniature Stirling cryocooler operating above 100 Hz down to liquid nitrogen temperature." Applied Thermal Engineering, vol. 186, p. 116524, 2021.
    [17] A. Biglia, M. Bilardo, L. Comba, D. R. Aimonino, M. Grella, E. Fabrizio, and P. Gay, "Performance analysis of a nitrogen-based Brayton cryocooler prototype." Energy, vol. 290, p. 130095, 2024.
    [18] D. Sun, X. Qiao, D. Yang, and Q. Shen, "Experimental study on a two-stage large cooling capacity stirling cryocooler working below 30 K." Cryogenics, vol. 129, p. 103619, 2023.
    [19] F. Wen, S. Liu, W. Wu, J. Song, N. Li, Z. Jiang, and Y. Wu, "Frequency response characteristics of a thermally coupled three-stage Stirling-type pulse tube cryocooler capable of achieving 110 mW@ 7 K." International Journal of Refrigeration, vol. 145, pp. 208-216, 2023.
    [20] H. Dang, H. Tan, T. Zhang, R. Zha, J. Tan, Y. Zhao, B. Zhao, R. Xue, J. Li, "A 1-2 K cryogenic system with light weight, long life, low vibration, low EMI and flexible cooling capacity for the superconducting nanowire single-photon detector." IEEE Transactions on Applied Superconductivity, vol. 31, no. 5, pp. 1-5, 2021.
    [21] H. Dang, D. Bao, T. Zhang, J. Tan, R. Zha, J. Li, N. Li, Y. Zhao, B. Zhao, "Theoretical and experimental investigations on the three-stage Stirling-type pulse tube cryocooler using cryogenic phase-shifting approach and mixed regenerator matrices." Cryogenics, vol. 93, pp. 7-16, 2018.
    [22] H. Dang, R. Zha, J. Tan, T. Zhang, J. Li, N. Li, B. Zhao, Y. Zhao, H. Tan, R. Xue "Investigations on a 3.3 K four-stage Stirling-type pulse tube cryocooler. Part B: Experimental verifications." Cryogenics, vol. 105, p. 103015, 2020.
    [23] H. Dang, H. Tan, J. Tan, B. Zhao, Y. Zhao, R. Xue, S. Wu, Y. Zhai, D. Wu, D. Ma, "Investigations on a 2.2 K five-stage stirling-type pulse tube cryocooler. Part B: Experimental verifications." Cryogenics, vol. 129, p. 103631, 2023.
    [24] Y. Lei, G. Hong, J. Quan, Y. Zhao, R. Li, G. Wang, Y. Ma, J. Liang, "Design and development of a 4He sub-Kelvin sorption cooler." Cryogenics, vol. 141, p. 103876, 2024.
    [25] C. H. Cheng, C. Y. Huang, and H. S. Yang., "Development of a 90-K beta type Stirling cooler with rhombic drive mechanism." International Journal of Refrigeration, vol. 98, pp. 388-398, 2019.
    [26] S. Popesku, “Experimental and Numerical Study of Beta-Type Stirling Cryocooler.” M.S. thesis, Dept. of Aeronaut. & Astronaut., National Cheng Kung University, Tainan, 2023.
    [27] C. Y. Huang, “Design and Theoretical Analysis of a Stirling Cooler.” M.S thesis, Dept. of Aeronaut. & Astronaut., National Cheng Kung University, Tainan, 2012.
    [28] J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L. Herrick, R. A. Nelson, D. Sayre, P. B. Sheridan, H. Stern, I. Ziller, R. A. Hughes, and R. Nutt, "The FORTRAN automatic coding system." Papers presented at the February 26-28, 1957, western joint computer conference: Techniques for reliability, 1957.
    [29] C. H. Cheng, and D. T. Phung, “Numerical Optimization of the β-type Stirling Engine Performance Using the Variable-Step Simplified Conjugate Gradient Method.” Energies, vol. 14. no. 23, p. 7835, 2021.
    [30] K. Nam and S. Jeong, "Novel flow analysis of regenerator under oscillating flow with pulsating pressure." Cryogenics, vol. 45, no. 5, pp. 368-379, 2005.
    [31] J. S. Arora, Introduction to Optimum Design. Elsevier, 2004.
    [32] J. W. Zhuo, “Theoretical Analysis and Manufacturing of a Two-stage Stirling Cooler.” M.S. thesis, Dept. of Aeronaut. & Astronaut., National Cheng Kung University, Tainan, 2015.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE