簡易檢索 / 詳目顯示

研究生: 陳政鴻
Chen, Cheng-Hong
論文名稱: 鋁氫化鋰儲氫罐系統設計研究
A study on the Design of the Hydrogen Storage Canister for Lithium Alanate
指導教授: 蔡文達
Tsai, Wen-Ta
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 117
中文關鍵詞: 鋁氫化鋰儲氫罐質子交換膜燃料電池釋氫穩定性
外文關鍵詞: lithium alanate, hydrogen storage canister, proton exchange membrane fuel cell, discharging stability
相關次數: 點閱:109下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究嘗試設計鋁氫化鋰(LiAlH4)為主的儲氫容器作為燃料電池所需之氫氣源。透過所設計之兩種中空圓柱的儲氫罐,探討LiAlH4置於儲氫罐內的熱放氫性質與儲氫容器的熱傳導對氫氣釋放效能的關係,並於了解其特性後,針對其缺點改良設計出另一添加內套管與四個儲存空間的鋁製粉床之儲氫罐,進而比較三種儲氫罐放氫之效能。實驗利用已建立之測試平台測定LiAlH4的起始放氫溫度、放氫速率及放氫量等放氫性質,透過不同加熱程序,探討供應的熱量對LiAlH4的釋氫穩定性與氫氣使用率的影響,並透過連接市售之質子交換膜燃料電池(PEMFC)進行發電測試。
    結果顯示,在程式控制間歇性加熱試驗中,置於三種罐體內的LiAlH4起始放氫溫度皆低於理論值(約略175 oC),此溫度差異主要為熱電偶量測的位置以及管壁至內部粉體間的溫度梯度所導致;三種罐體的熱放氫行為結果並無太大差異,顯示其熱傳導效能並無太大改善。而透過長時間恆溫試驗中可得知,溫度的變化主要為LiAlH4放氫行為穩定的重要因素,因此將透過手動控制加熱功率進行改善。在控制加熱功率維持放氫速率的間歇性加熱試驗結果顯示,透過質流量計 (MFM) 所量測之放氫速率讀值的回饋調整加熱功率,能大幅改善放氫行為的穩定性,且提升放氫效率至78 %。最後,所設計之儲氫罐填充先前實驗室所開發複合材料作為氫氣源供應燃料電池進行測試,可使儲氫罐在操作溫度在100 oC以下釋放氫氣,且穩定提供燃料電池發電所需之氫氣源。綜合上述結果,本研究所設計之儲氫罐可以作為LiAlH4的儲存容器,在搭配所開發的複合材料後,能滿足燃料電池系統操作所需之條件,且符合DOE所設立之放氫溫度目標 ( < 100 oC)。

    This study is attempted to design a container for lithium alanate (LiAlH4) storage as the hydrogen source for a fuel cell. Two hollow cylindrical storage canisters and one container with divided housing were designed. A testing platform was also established and employed to determine the performance of the containers designed. The testing platform could evaluate the discharging temperature, rate, and amount of discharged hydrogen from LiAlH4, based on the heating programs applied. Under intermittent heating processes, the experimental results showed that initial hydrogen discharging temperatures of LiAlH4 were all lower than the theoretical value (around 175 oC) for all three canisters designed. The discrepancy was mainly associated with the position of the temperature sensors and the temperature gradient developed from the canister wall to the powder of the LiAlH4 inside the container. By applying controlled feed-back heating process to the cylindrical canister with divided housing, a much better stability in hydrogen discharging performance, in terms of discharging rate, could be achieved. At the operating temperature below 230 oC, a discharging efficiency as high as 78% of the theoretical value of LiAlH4 was obtained. The canister designed which stored the composite developed in the previous research was further implemented to a fuel cell to justify its role as the component of hydrogen source. The results clearly demonstrated that the LiAlH4 storage canister designed in this study did perform satisfactorily to supply hydrogen for the effective and proper operation of the fuel cell application.

    摘要 I Extended Abstract III 誌謝 X 總目錄 XI 表目錄 XIII 圖目錄 XIV 一、 前言 1 二、 研究背景及文獻回顧 8 2-1 儲氫技術的發展現況 8 2-1-1 高壓氫氣儲存法 8 2-1-2 液態氫儲存法 9 2-1-3 固態金屬氫化物儲氫系統 10 2-2 鋁氫化鋰之基本性質 14 2-3 複合金屬氫化物儲氫罐的發展 16 2-3-1 水解放氫儲氫罐系統 17 2-3-2 熱解放氫系統儲氫罐 20 三、研究方法與實驗步驟 41 3-1 儲氫材料 41 3-1-1 鋁氫化鋰 41 3-1-2 鋁氫化鋰-三氯化鈦修飾多壁奈米碳管混合粉體[11, 12] 41 3-2 儲氫罐設計 42 3-2-1 第一型儲氫罐 42 3-2-2 第二型儲氫罐 43 3-2-3 第三型儲氫罐 44 3-3 測試平台 45 3-4 儲氫罐測試 47 3-4-1 第一型與第二型儲氫罐測試 47 3-4-2 第三型儲氫罐測試 48 四、 結果與討論 64 4-1 第一型及第二型儲氫罐放氫測試 64 4-1-1 程式控制間歇性加熱對儲氫罐連續放氫行為影響 64 4-1-2 長時間恆溫對儲氫罐熱平衡放氫行為影響 67 4-2 第三型儲氫罐放氫測試 69 4-2-1 程式控制間歇性加熱對儲氫罐連續放氫行為影響 70 4-2-2 加熱功率調控時間對LiAlH4放氫行為穩定性的影響 71 4-2-3 維持放氫速率對LiAlH4放氫行為穩定度的影響 74 4-3 儲氫罐結合燃料電池發電示範系統 77 4-3-1 第三型儲氫罐結合燃料電池之發電測試 78 4-3-2 複合材料置於第二型儲氫罐結合燃料電池之風扇運轉實測 79 五、 結論 106 參考文獻 108

    1. C. Ronneau, “Énergie, pollution de l’air et développement durable”, Louvain-la-Neuve: Presses universitaires de Louvain, 2004.
    2. M. Granovskii, I. Dincer, M. A. Rosen, “Life cycle assessment of hydrogen fuel cell and gasoline vehicles”, Int. J. Hydrogen Energy, 31 337-352 (2006).
    3. R. bon Helmolt, U. Eberle, “Fuel cell vehicles: Status 2007”, J. Power Sources, 165 833-843 (2007).
    4. P. Corbo, F.E. Corcione, F. Migliardini, O. Veneri, “Experimental assessment of energy-management strategies in fuel-cell propulsion systems”, J. Power Sources, 145 610-619 (2005).
    5. Toyota, "燃料電池自動車", website available at: http://www.toyota.co.jp/jpn/tech/environment/fcv/index.html
    6. U.S. DOE, “Fuel Cell Technologies Offices Multi-Year Research, Development and Demonstration Plan”, 3.3 hydrogen storage, 2015, website available at: http://energy.gov/sites/prod/files/2015/05/f22/fcto_myrdd_storage.pdf.
    7. Z.X. Guo, C. Shang, K.F. Aguey-Zinsou, “Materials challenges for hydrogen storage”, J. Eur. Ceram. Soc., 28 1473-1476 (2008).
    8. U. Eberle, G. Arnold, R. von Helmolt, “Hydrogen storage in metal-hydrogen systems and their derivatives”, J. Power Sources, 154 456-460 (2006).
    9. U.S. DOE, “Basic research needs for the hydrogen economy”, Basic research Challenges for Hydrogen Storage, Washington, D.C., Second Printing, 31-51 (2004).
    10. L. Schlapbach, A. Züttel, “Hydrogen-storage materials for mobile applications”, Nature, 414 353-358 (2001).
    11. 譚家彥,添加經表面修飾之多壁奈米碳管觸媒對複合金屬氫化物放氫行為的影響研究,國立成功大學材料科學及工程學系博士論文,(民104年7月)。
    12. C.Y. Tan, W.T. Tsai, “Effects of TiCl3-decorated MWCNTs addition on the dehydrogenation behavior and stability of LiAlH4”, Int. J. Hydrogen Energy, 39 20038-20044 (2014).
    13. E. Tzimas, C. Filiou, S. D. Peteves, J. B. Veyret, “Hydrogen Storage: State-of-the-art and Future Perspective”, Institute for Energy, D.G. J.R.C., The Netherlands, 29-75 (2003).
    14. A. Lanz, J. Heffel, C. Messer, “Hydrogen Fuel Cell Engines and Related Technologies”, College of the Desert, Palm Desert, CA, USA, 1–17 - 1–24 (2001).
    15. H. Braess, C. Cozzarini, C. Huss, A. Jungk, J. Wolf, “Hydrogen - The Fuel for Future Powertrain Technologies”, BMW Group, Munich, Germany, 1-20 (2001).
    16. A. Belloni, “Reports on Science and Technologies”, Linde Technology, 1 4-52 (2003).
    17. J. Wolf, “Liquid-Hydrogen Technology for Vehicles”, MRS Bulletin, 27(9) 684-687 (2002).
    18. M. Martin, C. Gommel, C. Borkhart, E. Fromm, “Absorption and desorption kinetics of hydrogen storage alloys”, J. Alloys Compd., 238 193-201 (1996).
    19. A. Züttel, “Materials for hydrogen storage”, Master. Today, 6 24-33 (2003).
    20. D. Chandra, J. J. Reilly, R. Chellappa, “Metal hydride for vehicular applications: the storage of the art”, JOM, 58 26-32 (2006).
    21. 蘇順發,「儲氫材料」,科學發展月刊,483 12-17 (2013)。
    22. Asia Pacific Fuel cell Technologies, "低壓金屬儲氫罐", website available at: http://www.apfct.com/tw/product/hydrogen-canister/
    23. U. Eberle, M. Felderhoff, F. Schüth, “Chemical and physical solutions for hydrogen storage”, Angew. Chem. Int. Ed., 48 6608-6630 (2009).
    24. M. B. Ley, L. H. Jepsen, Y.-S. Lee, Y.W. Cho, J. M. Bellosta von Colbe, M. Dornheim, M. Rokni, J. O. Jensen, M. Sloth, Y. Filinchuk, J. E. Jørgensen, F. Besenbacher, T. R. Jensen, “Complex hydrides for hydrogen storage - New perspectives”, Mater. Today, 17 122-128 (2014).
    25. B. Bogdanović, M. Schwickardi, “Ti-doped alkali metal aluminium hydride reversible hydrogen storage materials”, J. Alloys Compd., 253-254 1-9 (1997).
    26. L.H. Rude, T. K. Nielsen, D. B. Ravnsbæk, U. Bösenberg, M. B. Ley, B. Richter, L. M. Arnbjerg, M. Dornheim, Y. Filinchuk, F. Besenbacher, and T. R. Jensen, “Tailoring properties of borohydrides for hydrogen storage: A review”, Phys. Status Solidi A, 208 1754-1773 (2011).
    27. W. I. F. David, “Effective hydrogen storage: a strategic chemistry challenge”, Faraday Discuss., 151 399-414 (2011).
    28. A. E. Finholt, A. C. Bond, H. I. Schlesinger, “Lithium aluminum hydride, Aluminum Hydride and Lithium Gallium Hydride, and Some of their Applications in Organic and Inorganic Chemistry”, J. Am. Chem. Soc., 69 1199-1203 (1947).
    29. O. M. Løvvik, S. M. Opalka, H. W. Brinks and B. C. Hauback, “Crystal and thermodynamic stability of the lithium alanates LiAlH4 and Li3AlH6”, Physical Review B, 69 134117 (2004).
    30. Ben Mills, “Polyhedral model of the unit cell of lithium aluminium hydride, LiAlH4”, 2007, website available at: https://commons.wikimedia.org/wiki/File:Lithium-aluminium-hydride-unit-cell-3D-polyhedra.png
    31. J. A. Dilts, E. C. Ashby, “A study of the thermal decomposition of complex metal hydrides”, Inorg. Chem., 11 1230-1236 (1972).
    32. V. P. Balema, K. W. Dennis, V. K. Pecharsky, “Rapid solid-state transformation of tetrahedral [AlH4]- into octahedral [AlH6]3- in lithium aluminohydride", Chem. Commun., 1665-1666 (2000).
    33. H. W. Brinks, B. C. Hauback, P. Norby, H. Fjellvåg, “The decomposition of LiAlD4 studied by in-situ X-ray and neutron diffraction”, J. Alloys Compd., 351 222-227 (2003).
    34. A. Andreasen, T. Vegge, A. S. Pedersen, “Dehydrogenation kinetics of as-received and ball-milled LiAlH4”, J. Solid state Chem., 178 3672-3678 (2005).
    35. P. Adelhelm and P. E. de Jongh, “The impact of carbon materials on the hydrogen storage properties of light metal hydrides”, J. Mater. Chem., 21(8) 2417-2427 (2011).
    36. M. Ismaail, Y. Zhao, X. Yu, A. Ranjbar, S. X. Dou, "Improved hydrogen desorption in lithium alanate by addition of SWCNT metallic catalyst", Int. J. Hydrogen Energy, 36(5) 3593-3599 (2011).
    37. W.C. Hsu, C.H. Yang, and W.T. Tsai, “Catalytic effect of MWCNTs on the dehydrogenation behavior of LiAlH4”, Int. J. Hydrogen Energy, 39(2) 927-933 (2014).
    38. R. A. Varin and R. Parviz, “The effects of the micrometric and nanometric iron (Fe) additives on the mechanical and thermal dehydrogenation of lithium alanate (LiAlH4), its self-discharge at low temperatures and rehydrogenation”, Int. J. Hydrogen Energy, 37(11) 9088-9102 (2012).
    39. R. A. Varin, L. Zbroniec, T. Czujko, Z. S. Wronski, “The effects of nanonickel additive on the decomposition of complex metal hydride LiAlH4 (lithium alanate)”, Int. J. Hydrogen Energy, 36 1167-1176 (2011).
    40. D. S. Easton, J. H. Schneibel, and S. A. Speakman, “Factors affecting hydrogen release from lithium alanate (LiAlH4)”, J. Alloys Compd., 398(1-2) 245-248 (2005).
    41. J. Fu, L. Röntzsch, T. Schmidt, M. Tegel, T. Weißgärber, B. Kieback, “Comparative study on the dehydrogenation properties of TiCl4-doped LiAlH4 using different doping techniques”, Int. J. Hydrogen Energy, 37(18) 13387-13392 (2012).
    42. J. A. Teprovich Jr. D. A. Knight, M. S. Wellons, R. Zidan, “Catalytic effect of fullerene and formation of nanocomposites with complex hydrides: LiAlH4”, J. Alloys Compd., 5095 S562-S566 (2011).
    43. X.F. Liu, S. D. Beattie, H. W. Langmi, G. Sean McGrady, C. M. Jensen, “Ti-doped LiAlH4 for hydrogen storage: Rehydrogenation process, reaction conditions and microstructure evolution during cycling”, Int. J. Hydrogen Energy, 37 10215-10221 (2012).
    44. P. Corbo, F. Migliardini, O. Veneri, “Hydrogen release properties of lithium alanate for application to fuel cell propulsion systems”, J. Power Sources, 193 285-291 (2009).
    45. H. I. Schlesinger, H. C. Brown, H. R. Hoekstra, L. R. Rapp, “Reaction of diborane with alkali metal hydrides and their addition compounds. New syntheses of borohydrides. Sodium and potassium borohydrides”, J. Am. Chem. Soc., 75(1) 199-204 (1953).
    46. S. C. Amendola, S. L. Sharp-Goldman, M. S. Janjua, M. T. Kelly, P. J. Petillo, M. Binder, “An ultrasafe hydrogen generator: Aqueous, alkaline borohydride solutions and Ru catalyst”, J. Power sources, 85 186-189 (2000).
    47. B.H. Liu, Z.P. Li, “A review: Hydrogen generation from borohydride hydrolysis reaction”, J. Power Sources, 187 527-534 (2009).
    48. U. B. Demirci, O. Akdim, J. Andrieux, J. Hannauer, R. Chamoun, and P. Miele, “Sodium Borohydride Hydrolysis as Hydrogen Generator: Is Applicability Upstream from a Fuel Cell”, Fuel Cells, 10 335-350 (2010).
    49. U. B. Demirci and P. Miele, “Sodium borohydride versus ammonia borane, in hydrogen storage and direct fuel cell applications”, Energ. Environ. Sci., 2 627-637 (2009).
    50. Ӧ. Metin, V. Mazumder, S. Ӧzkar, S. Sun, “Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane”, J. Am. Chem. Soc., 132 1468-1469 (2010).
    51. D. Sun, V. Mazumder, Ӧ Metin, S. Sun, “Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles”, ACS nano, 5(8) 6458-6464 (2011).
    52. U. B. Demirci, P. Miele, “Cobalt-based catalysts for the hydrolysis of NaBH4 and NH3BH3”, Phys. Chem. Chem. Phys., 16 6872-6885 (2014).
    53. A. M. F. R. Pinto, D. S. Falcão, R. A. Silva, C. M. Rangel, “Hydrogen generation and storage from hydrolysis of sodium borohydride in batch reactors”, Int. J. Hydrogen Energy, 31 1341-1347 (2006).
    54. M. J. F. Ferreira, V. R. Fernandes, L. Gales, C. M. Rangel, A. M. F. R. Pinto, “Effects of the addition of an organic polymer on the hydrolysis of sodium tetrahydroborate in batch reactors”, Int. J. Hydrogen Energy, 35 11456-11469 (2010).
    55. A. M. F. R. Pinto, M. J. F. Ferreir, V. R. Fernandes, C. M. Rangel, “Durability and reutilization capabilities of a Ni-Ru catalyst for the hydrolysis of sodium borohydride in batch reactors”, Catal. Today, 170 40-49 (2011).
    56. M. J. F. Ferreira, F. Coelho, C. M. Rangel, A. M. F. R. Pinto, “Batch sodium borohydride hydrolysis systems: Effect of sudden valve opening on hydrogen generation rate”, Int. J. Hydrogen Energy, 37 1947-1953 (2012).
    57. M. J. F. Ferreira, C. M. Rangel, A. M. F. R. Pinto, “Water handling challenge on hydrolysis of sodium borohydride in batch reactors”, Int. J. Hydrogen Energy, 37 6985-6994 (2012).
    58. Q. Zhang, G. M. Smith, Y. Wu, “Catalytic hydrolysis of sodium borohydride in an integrated reactor for hydrogen generation”, Int. J. Hydrogen Energy, 32 4731-4735 (2007).
    59. Q. Zhang, G. Smith, Y. Wu, R. Mohring, “Catalytic hydrolysis of sodium borohydride in an auto-thermal fixed-bed reactor”, Int. J. Hydrogen Energy, 31 961-965 (2006).
    60. D. Gervasio, S. Tasic, F. Zenhausem, “Room temperature micro-hydrogen-generator”, J. Power Sources, 149 15-21 (2005).
    61. H.Y. Li, Y.T. Chen, M.T. Lu, Y.H. Lai, J.T. Yang, “Design and testing of a novel catalytic reactor to generate hydrogen”, Int. J. Hydrogen Energy, 39(23) 11945-11954 (2014).
    62. T. Kim, “Hydrogen generation from sodium borohydride using microreactor for micro fuel cells”, Int. J. Hydrogen Energy, 36(2) 1404-1410 (2011).
    63. T. Kim, “Fully-integrated micro PEM fuel cell system with NaBH4 hydrogen generator”, Int. J. Hydrogen Energy, 37(3) 2440-2446 (2012).
    64. L. Zhu, N. Kroodsma, J. Yeom, J. L. Haan, M. A. Shannon, D. D. Meng, “An on-demand microfluidic hydrogen generator with self-regulated gas generation and self-circulated reactant exchange with a rechargeable reservoir”, Microfluid NanoFluidics, 11 569-578 (2011).
    65. C. N. Ranong, M. Höhne, J. Franzen, J. Hapke, G. Fieg, M. Dornheim, N. Eigen, J. M. Bellosta von Colbe, O. Metz, “Concept, Design and Manufacture of a Prototype Hydrogen Storage Tank Based on Sodium Alanate”, Chem. Eng. Technol., 32(8) 1154-1163 (2009).
    66. G. A. Lozano, C. N. Ranong, J. M. Bellosta von Colbe, R. Bormann, G. Fieg, J. Hapke, M. Dornheim, “Empirical kinetic model of sodium alanate reacting system (II). Hydrogen desorption”, Int. J. Hydrogen Energy, 35(14) 7539-7546 (2010).
    67. J. M. Bellosta von Colbe, O. Metz, G. A. Lozano, P. K. Pranzas, H. W. Schmitz, F. Beckmann, A. Schreyer, T. Klassen, M. Dornheim, “Behavior of scaled-up sodium alanate hydrogen storage tanks during sorption”, Int. J. Hydrogen Energy, 37(3) 2807-2811 (2012).
    68. J. M. Bellosta von Colbe, G. Lozano, O. Metz, T. Bücherl, R. Bormann, T. Klassen, M. Dornheim, “Design, sorption behavior and energy management in a sodium alanate-based lightweight hydrogen storage tank”, Int. J. Hydrogen Energy, 40(7) 2984-2988 (2015).
    69. I. Utz, M. Linder, N. Schmidt, J.J. Hu, M. Fichtner, A. Wörner, “Experimental study of powder bed behavior of sodium alanate in a lab-scale H2 storage tank with flow-through mode”, Int. J. Hydrogen Energy, 37(9) 7645-7653 (2012).
    70. R. Urbanczyk, S. Peil, D. Bathen, C. Heßke, J. Burfeind, K. Hauschild, M. Felderhoff, and F. Schüth, “HT-PEM Fuel Cell System with Integrated Complex Metal Hydride Storage Tank”, Fuel Cells, 11 911-920 (2011).
    71. R. Urbanczyk, K. Peinecke, M. Felderhoff, K. Hauschild, W. Kersten, S. Peil, D. Bathen, “Aluminium alloy based hydrogen storage tank operated with sodium aluminium hexahydride Na3AlH6”, Int. J. Hydrogen Energy, 39(30) 17118-17128 (2014).
    72. I. Bürger, C. Luetto, M. Linder, “Advanced reactor concept for complex hydrides: Hydrogen desorption at fuel cell relevant boundary conditions”, Int. J. Hydrogen Energy, 39(14) 7346-7355 (2014).
    73. M.Y. Yan, F. Sun, X.P. Liu, J.H. Ye, “Effects of compaction pressure and graphite content on hydrogen storage properties of Mg(NH2)2-2LiH hydride”, Int. J. Hydrogen Energy, 39(34) 19656-19661 (2014).
    74. M.Y. Yan, F. Sun, X.P. Liu, J.H. Ye, S.M. Wang, L.J. Jiang, “Effects of graphite content and compaction pressure on hydrogen desorption properties of Mg(NH2)2-2LiH based tank”, J. Alloys Compd., 628 63-67 (2015).
    75. M. B. Ley, M. Meggouh, R. Moury, K. Peinecke, and M. Felderhoff, “Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides”, Materials, 8(9) 5891-5921 (2015).
    76. B. Bonnetot, P. Claudy, M. Diot, and J. M. LÉTOFFÉ, “Lithium tetrahydridoaluminate LiAlH4 and hexahydridoaluminate Li3AlH6: molar heat capacity and thermodynamic properties from 10 to 300 K”, J. Chem. Thermodynamics, 11 1197-1202 (1979).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE