| 研究生: |
林怡岑 Lin, I-Tsen |
|---|---|
| 論文名稱: |
缺氧在子宮內膜異位基質細胞中調控介白素-6和介白素-8的機制之探討 Regulation of Interleukin 6 (IL-6) and Interleukin 8 (IL-8) by hypoxia in endometriotic stromal cells |
| 指導教授: |
吳孟興
Wu, Meng-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 子宮內膜異位症 、缺氧 、介白素-6 、介白素-8 |
| 外文關鍵詞: | endometriosis, hypoxia, Interleukin-6, Interleukin-8 |
| 相關次數: | 點閱:124 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
子宮內膜的腺體上皮細胞和基質細胞在子宮腔以外的任一器官或組織附著與生長稱之為子宮內膜異位症。臨床的症狀通常伴隨著慢性的長期腹痛和不孕,是一種在生育年齡婦女很常見的婦科疾病。雖然已經有很多的學說來說明子宮內膜異位症可能生成的原因,然而主要的成因和致病機轉仍未被清楚地被解釋。根據先前的研究指出,慢性的腹腔發炎是造成子宮內膜異位症的一個重要的致病因子。在病患的腹腔液中有較高濃度和發炎相關的細胞激素,其中包含介白素-1、介白素-6、介白素-8和甲型腫瘤壞死因子,這些細胞激素被認為可以促進異位的子宮內膜細胞的增生和存活等因素,進而導致子宮內膜異位症的生成,並且可以進一步的刺激巨噬細胞分泌更多的細胞激素,形成一個惡性循環。另一方面,當異位的子宮內膜組織經由輸卵管進入腹腔中時,首先會遭遇到嚴峻的缺氧環境,使得異位的組織缺乏氧氣和養分的供應。缺氧不論在病理和生理功能中皆被視為是個重要的因子來調控基因的表現;我們過去的研究指出在異位的細胞中,缺氧調控因子-1α (hypoxia inducible factor-1α, HIF-1α) 會被正向的調控。因此,我們假設異位的基質細胞中介白素-6和介白素-8的過度表現是由於缺氧所導致的,要證實這項假設,我們以缺氧處理原位的基質細胞來觀察對介白素-6和介白素-8的影響。結果顯示,無論是異位的組織或是分離後的異位基質細胞中,相較於原位的組織,介白素-6和介白素-8皆有明顯增加的情形。而將原位基質細胞處以缺氧的環境中會增加介白素-6和介白素-8的表現量。我們更進一步發現:缺氧不僅是透過增加介白素-6和介白素-8傳訊者 核醣核酸的轉錄作用,同時也會透過維持傳訊者核醣核酸的穩定性。除此之外,也利用人類臍帶靜脈內皮管柱形成實驗 (Tube formation assay) 發現,介白素-8會促進血管新生進而導致子宮內膜異位症的生成。綜合以上結果顯示:將原位基質細胞處以缺氧用來模擬子宮內膜組織逆流至腹腔中時所面臨的缺氧環境,的確會促進介白素-6和介白素-8的表現量上升,說明了缺氧是調控基質細胞中介白素-6和介白素-8上升的重要因子,在子宮內膜異位症生成中中扮演一個重要的角色,並且為研究子宮內膜異位症的病原學開啟了另一扇門。
Endometriosis is one of the most common gynecological diseases in women during reproductive age. It is characterized by the persistence and growth of vascularized endometrial tissue at ectopic sites, and is associated with pelvic pain and infertility. Although several hypotheses have been proposed, the etiology of endometriosis is still enigmatic. One of the most important pathological roles of endometriosis is chronic pelvic inflammation. Several inflammatory cytokines including interleukin-1 (IL-1), IL-6, IL-8 and tumor necrosis factor-α, are elevated in peritoneal fluid, which contributes to the formation of endometriosis through influencing the establishment and proliferation of ectopic endometrial implants and further cytokine secretion by macrophages. Endometrial stromal cells suffer from hypoxic stress after retrograding to pelvic capacity. Hypoxia is known to be a common pathophysiological feature that regulates gene expression and affects disease processes. Our previous studies demonstrated that hypoxia inducible factor-1α (HIF-1α) is upregulated in endometriotic stromal cells. Therefore, we hypothesized that overexpression of IL-6 and IL-8 in ectopic stromal cells might be induced by hypoxia. Our results demonstrated that IL-6 and IL-8 were overexpressed in ectopic endometriotic implants than that in eutopic stromal cells. Endometrial stromal cells treated with hypoxia significantly induced the expression of IL-6 and IL-8. We further demonstrated that hypoxia-regulated IL-6 and IL-8 expressions were not only mediated by transcriptional upregulation but also increased IL-6 and IL-8 mRNA stability. In addition, hypoxia-increased IL-8 expression promoted angiogenesis by tube formation assay. Taken together, treating eutopic stromal cells with hypoxia to mimic endometrial stromal cells suffering from hypoxic environment can induce IL-6 and IL-8 expressions. These data indicate the critical role of hypoxia-induced IL-6 and IL-8 expressions in the development of endometriosis that may shed lights on investigating novel molecular mechanisms of the etiology of endometriosis.
Ahuja, S. K. and P. M. Murphy (1996). The CXC chemokines growth-regulated oncogene (GRO) alpha, GRObeta, GROgamma, neutrophil-activating peptide-2, and epithelial cell-derived neutrophil-activating peptide-78 are potent agonists for the type B, but not the type A, human interleukin-8 receptor. J Biol Chem 271(34): 20545-20550.
Akira, S., T. Taga, et al. (1993). Interleukin-6 in biology and medicine. Adv Immunol 54: 1-78.
Amaral, V. F., R. A. Ferriani, et al. (2006). Positive correlation between serum and peritoneal fluid CA-125 levels in women with pelvic endometriosis. Sao Paulo Med J 124(4): 223-227.
Arici, A., S. I. Tazuke, et al. (1996). Interleukin-8 concentration in peritoneal fluid of patients with endometriosis and modulation of interleukin-8 expression in human mesothelial cells. Mol Hum Reprod 2(1): 40-45.
Baggiolini, M., B. Moser, et al. (1994). Interleukin-8 and related chemotactic cytokines. The Giles Filley Lecture. Chest 105(3 Suppl): 95S-98S.
Barcz, E., E. S. Rozewska, et al. (2002). Angiogenic activity and IL-8 concentrations in peritoneal fluid and sera in endometriosis. Int J Gynaecol Obstet 79(3): 229-235.
Becker, C. M., N. Rohwer, et al. (2008). 2-methoxyestradiol inhibits hypoxia-inducible factor-1{alpha} and suppresses growth of lesions in a mouse model of endometriosis. Am J Pathol 172(2): 534-544.
Beliard, A., A. Noel, et al. (2004). Reduction of apoptosis and proliferation in endometriosis. Fertil Steril 82(1): 80-85.
Belperio, J. A., M. P. Keane, et al. (2000). CXC chemokines in angiogenesis. J Leukoc Biol 68(1): 1-8.
Brew, R., J. S. Erikson, et al. (2000). Interleukin-8 as an autocrine growth factor for human colon carcinoma cells in vitro. Cytokine 12(1): 78-85.
Cheong, Y., P. Tay, et al. (2008). Laparoscopic surgery for endometriosis: How often do we need to re-operate? J Obstet Gynaecol 28(1): 82-85.
Cheong, Y. C., J. B. Shelton, et al. (2002). IL-1, IL-6 and TNF-alpha concentrations in the peritoneal fluid of women with pelvic adhesions. Hum Reprod 17(1): 69-75.
Chuang, P. C., Y. J. Lin, et al. (2010). Inhibition of CD36-dependent phagocytosis by prostaglandin E2 contributes to the development of endometriosis. Am J Pathol 176(2): 850-860.
Chuang, P. C., M. H. Wu, et al. (2009). Downregulation of CD36 results in reduced phagocytic ability of peritoneal macrophages of women with endometriosis. J Pathol 219(2): 232-241.
Cohen, T., D. Nahari, et al. (1996). Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 271(2): 736-741.
Corwin, E. J. (1997). Endometriosis: pathophysiology, diagnosis, and treatment. Nurse Pract 22(10): 35-38, 40-32, 45-36, passim; quiz 56-37.
Garcia-Velasco, J. A. and A. Arici (1999). Interleukin-8 stimulates the adhesion of endometrial stromal cells to fibronectin. Fertil Steril 72(2): 336-340.
Gawrychowski, K., E. Skopinska-Rozewska, et al. (1998). Angiogenic activity and interleukin-8 content of human ovarian cancer ascites. Eur J Gynaecol Oncol 19(3): 262-264.
Giudice, L. C. (1994). Growth factors and growth modulators in human uterine endometrium: their potential relevance to reproductive medicine. Fertil Steril 61(1): 1-17.
Gleicher, N. (1994). The role of humoral immunity in endometriosis. Acta Obstet Gynecol Scand Suppl 159: 15-17.
Green, A. R., V. L. Green, et al. (1997). Expression of cytokine messenger RNA in normal and neoplastic human breast tissue: identification of interleukin-8 as a potential regulatory factor in breast tumours. Int J Cancer 72(6): 937-941.
Groothuis, P. G., A. W. Nap, et al. (2005). Vascular development in endometriosis. Angiogenesis 8(2): 147-156.
Heinrich, P. C., I. Behrmann, et al. (1998). Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 334 ( Pt 2): 297-314.
Hirano, T., K. Yasukawa, et al. (1986). Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 324(6092): 73-76.
Iwabe, T., T. Harada, et al. (2000). Tumor necrosis factor-alpha promotes proliferation of endometriotic stromal cells by inducing interleukin-8 gene and protein expression. J Clin Endocrinol Metab 85(2): 824-829.
Iwabe, T., T. Harada, et al. (1998). Pathogenetic significance of increased levels of interleukin-8 in the peritoneal fluid of patients with endometriosis. Fertil Steril 69(5): 924-930.
Jones, K. L., D. M. de Kretser, et al. (2004). Activin A and follistatin in systemic inflammation. Mol Cell Endocrinol 225(1-2): 119-125.
Jubanyik, K. J. and F. Comite (1997). Extrapelvic endometriosis. Obstet Gynecol Clin North Am 24(2): 411-440.
Keenan, J. A., T. T. Chen, et al. (1994). Interferon-gamma (IFN-gamma) and interleukin-6 (IL-6) in peritoneal fluid and macrophage-conditioned media of women with endometriosis. Am J Reprod Immunol 32(3): 180-183.
Keenan, J. A., T. T. Chen, et al. (1995). IL-1 beta, TNF-alpha, and IL-2 in peritoneal fluid and macrophage-conditioned media of women with endometriosis. Am J Reprod Immunol 34(6): 381-385.
Khan, K. N., H. Masuzaki, et al. (2005). Interleukin-6- and tumour necrosis factor alpha-mediated expression of hepatocyte growth factor by stromal cells and its involvement in the growth of endometriosis. Hum Reprod 20(10): 2715-2723.
Kyama, C. M., S. Debrock, et al. (2003). Potential involvement of the immune system in the development of endometriosis. Reprod Biol Endocrinol 1: 123.
Lin, S. C., C. C. Wang, et al. (2012). Hypoxia-Induced MicroRNA-20a Expression Increases ERK Phosphorylation and Angiogenic Gene Expression in Endometriotic Stromal Cells. J Clin Endocrinol Metab.
Murphy, A. A. (2002). Clinical aspects of endometriosis. Ann N Y Acad Sci 955: 1-10; discussion 34-16, 396-406.
Muyldermans, M., F. J. Cornillie, et al. (1995). CA125 and endometriosis. Hum Reprod Update 1(2): 173-187.
Nap, A. W., P. G. Groothuis, et al. (2004). Pathogenesis of endometriosis. Best Pract Res Clin Obstet Gynaecol 18(2): 233-244.
Ogata, A., D. Chauhan, et al. (1997). IL-6 triggers cell growth via the Ras-dependent mitogen-activated protein kinase cascade. J Immunol 159(5): 2212-2221.
Olive, D. L. and L. B. Schwartz (1993). Endometriosis. N Engl J Med 328(24): 1759-1769.
Othman Eel, D., D. Hornung, et al. (2008). Serum cytokines as biomarkers for nonsurgical prediction of endometriosis. Eur J Obstet Gynecol Reprod Biol 137(2): 240-246.
Ryan, I. P., E. D. Schriock, et al. (1994). Isolation, characterization, and comparison of human endometrial and endometriosis cells in vitro. J Clin Endocrinol Metab 78(3): 642-649.
Schonbohn, H., M. Schuler, et al. (1995). Plasma levels of IL-1, TNF alpha, IL-6, IL-8, G-CSF, and IL1-RA during febrile neutropenia: results of a prospective study in patients undergoing chemotherapy for acute myelogenous leukemia. Ann Hematol 71(4): 161-168.
Semenza, G. (2002). Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol 64(5-6): 993-998.
Semenza, G. L. (2000). HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88(4): 1474-1480.
Sharpe-Timms, K. L., R. L. Zimmer, et al. (1998). Gonadotropin-releasing hormone agonist (GnRH-a) therapy alters activity of plasminogen activators, matrix metalloproteinases, and their inhibitors in rat models for adhesion formation and endometriosis: potential GnRH-a-regulated mechanisms reducing adhesion formation. Fertil Steril 69(5): 916-923.
Simoens, S., L. Hummelshoj, et al. (2007). Endometriosis: cost estimates and methodological perspective. Hum Reprod Update 13(4): 395-404.
Stahl, N., T. G. Boulton, et al. (1994). Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science 263(5143): 92-95.
Sun, H. S., K. Y. Hsiao, et al. (2003). Transactivation of steroidogenic acute regulatory protein in human endometriotic stromalcells is mediated by the prostaglandin EP2 receptor. Endocrinology 144(9): 3934-3942.
Takahashi-Tezuka, M., Y. Yoshida, et al. (1998). Gab1 acts as an adapter molecule linking the cytokine receptor gp130 to ERK mitogen-activated protein kinase. Mol Cell Biol 18(7): 4109-4117.
Tjiong, M. Y., N. van der Vange, et al. (1999). Increased IL-6 and IL-8 levels in cervicovaginal secretions of patients with cervical cancer. Gynecol Oncol 73(2): 285-291.
Turini, M. E. and R. N. DuBois (2002). Cyclooxygenase-2: a therapeutic target. Annu Rev Med 53: 35-57.
Valle, R. F. (2002). Endometriosis: current concepts and therapy. Int J Gynaecol Obstet 78(2): 107-119.
Velasco, I., P. Acien, et al. (2010). Interleukin-6 and other soluble factors in peritoneal fluid and endometriomas and their relation to pain and aromatase expression. J Reprod Immunol 84(2): 199-205.
Vercellini, P., F. De Benedetti, et al. (1993). Tumor necrosis factor in plasma and peritoneal fluid of women with and without endometriosis. Gynecol Obstet Invest 36(1): 39-41.
Witz, C. A. (2002). Pathogenesis of endometriosis. Gynecol Obstet Invest 53 Suppl 1: 52-62.
Wolf, M., M. B. Delgado, et al. (1998). Granulocyte chemotactic protein 2 acts via both IL-8 receptors, CXCR1 and CXCR2. Eur J Immunol 28(1): 164-170.
Wu, M. H., K. F. Chen, et al. (2007). Aberrant expression of leptin in human endometriotic stromal cells is induced by elevated levels of hypoxia inducible factor-1alpha. Am J Pathol 170(2): 590-598.
Wu, M. H., S. C. Lin, et al. (2011). Hypoxia-inhibited dual-specificity phosphatase-2 expression in endometriotic cells regulates cyclooxygenase-2 expression. J Pathol 225(3): 390-400.
Wu, M. H., C. W. Lu, et al. (2010). Prostaglandin E2: the master of endometriosis? Exp Biol Med (Maywood) 235(6): 668-677.
Wu, M. H., H. S. Sun, et al. (2002). Distinct mechanisms regulate cyclooxygenase-1 and -2 in peritoneal macrophages of women with and without endometriosis. Mol Hum Reprod 8(12): 1103-1110.
Wu, M. Y. and H. N. Ho (2003). The role of cytokines in endometriosis. Am J Reprod Immunol 49(5): 285-296.
Xie, K. (2001). Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev 12(4): 375-391.
校內:2022-12-31公開