簡易檢索 / 詳目顯示

研究生: 莊淵仁
Chuang, Yuan-jen
論文名稱: 可調變之表面電漿強化有機材料自發發光
Enhanced spontaneous light emission for organic materials by tunable surface plasmon coupling
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 107
中文關鍵詞: 侷域型&傳播型表面電漿不連續偶極假設表面電漿耦合發光
外文關鍵詞: localized & propagating surface plasmon mode, discrete dipole approximation, surface plasmon coupling emission
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗中,以電子束微影術輔助,結合電漿蝕刻、金屬舉離製程製作不同之次微米結構,在改變金屬種類、圖騰結構與週期下,以光致螢光發光光譜,研究表面電漿共振與白光發光材料的耦合關係,並成功產生多發光波段表面電漿強化發光的結果。在理論上,則以金屬界面之色散關係、光柵耦合理論、有效吸收係數的計算,對表面電漿共振頻率,及其消散場間交互作用造成的偏移作一研究。
    以下依實驗製作之不同結構,分成四部分討論:章節4-1中,討論由金、銀、鋁薄膜、改變厚度之銀薄膜試片,與發光材料(polyfluorene 共聚高分子)的耦合。金屬表面粗糙度是波向量減損的關鍵,而厚度控制介面表面電漿共振頻率的分裂;章節4-2、4-3中,討論銀薄膜披覆之具一維、二維微結構矽基板,與發光材料耦合。傳播型表面電漿,增加表面電漿共振釋放為光的效率,而微結構造成金屬的侷域性,使表面電漿共振產生藍位移;章節4-4中,控制銀粒子陣列週期、直徑,與發光材料耦合。圓柱粒子共振頻率的分裂,使表面電漿與發光波段吻合,結合區域型與傳播型表面電漿共振,觀測到多波段之發光強度增進,而金屬間消散場在近場距離的互相作用,也反應在發光光譜的相對強度變化。

    Multiple surface Plasmon-coupling light emissions were successful demonstrated by photoluminescence observation. Different sub-micron structures were fabricated using standard electron beam lithography, ICP and lift-off process. In the theoretical approach, the dispersion relation between the metal and the dielectric interface, the wave vector loss by grating structures coupling and the effective absorption coefficient calculation by discrete dipole approximation were invested to realize the vibration of surface plasmon resonance frequency due to the interaction of evanescence fields between metal surfaces.
    The followings were divided into four parts with different metal structures. In Chapter 4-1, gold, silver, alumni thick films and different thickness of silver films were coupled with the white light-emitting material, copolymer of polyfluorene. The wave vector loss was determined by the roughness of the metal surface and the surface plasmon resonance energy split while decreasing metal thicknesses. In Chapter 4-2, 4-3, one & two dimensional silvered sub-micron structures on silicon substrates were coupled with polyfluorene. The surface plasmon resonance energy was extracted into light efficiently with the assistance of the propagating surface plasmon mode. Multiple enhanced light emissions were caused by the V shape induced resonance frequency broadening with evanescence field interaction. Localized metal structures induced blue shift of resonance frequencies were observed while decreasing pattern periods. In Chapter 4-4, silver dot arrays of controlled periods and diameters were coupled with polyfluorene. The resonance frequency was matched with the emission band of active layer due to the resonance splitting caused by the cylinder structure. Dramatically multiple enhanced light emissions were observed as a result of localized & propagating surface plasmon mode combination. Relative intensity changes of emission spectra were found due to the interaction between evanescence fields in the near field range.

    中文摘要 I ABSTRACT II 致謝 IV 總目錄 VI 圖目錄 X 第一章 緒論 1 1-1 表面電漿簡介 2 1-2 表面電漿於發光二極體之應用 4 1-3 實驗目標 7 第二章 金屬表面電漿與耦合理論 8 2-1 金屬介面表面電漿模態9,10 8 2-2 有限厚度金屬薄板表面電漿模態9,10 13 2-3 一般表面電漿耦合器之機制 17 2-4 區域型表面電漿子29 20 2-5 表面電漿子耦合輻射理論 25 2-6 不連續偶極假設之吸收係數計算46 28 第三章 實驗方法與步驟 30 3-1 電子束微影術介紹48 30 3-2 電子束蒸鍍系統介紹51 33 3-3 光學分析系統 35 I. 微光致螢光發光光譜量測 35 II. 反射光譜 35 III. 時間解析光致螢光發光光譜量測 37 3-4 微結構製作流程 38 I. 蝕刻製程溝與孔陣列製作 38 II. 舉離製程點陣列製作 38 III. 金屬薄膜製作 38 第四章 結果與討論 41 4-1 金屬薄膜之表面電漿耦合 41 I. 金銀鋁薄膜與PF之光學性質 41 II. 介電函數測定與色散關係 46 III. 不同厚度銀薄膜之表面電漿耦合 51 IV. 激子生命週期探討 56 V. 薄膜表面電漿耦合討論 58 4-2 一維溝陣列之表面電漿耦合 60 I. 一維溝陣列製作與檢測 60 II. 光致螢光發光光譜量測 65 III. 一維光柵結構耦合之色散關係 67 IV. 有效吸收係數之理論計算 70 V. 溝陣列之消散光譜 71 VI. 溝陣列與表面電漿共振寬化 73 4-3 二維孔陣列之表面電漿耦合 75 I. 二維孔陣列製作與檢測 75 II. 光致螢光發光光譜測量 80 III. 二維週期結構耦合之色散關係 82 IV. 消散光譜測量 85 V. 二維孔陣列耦合之表面電漿共振 86 4-4 二維點陣列之表面電漿耦合 87 I. 二維點陣列製作與檢測 87 II. 光致螢光發光光譜的測量 93 III. 有效吸收之理論推算 96 IV. 圓柱陣列耦合表面電漿強化發光 97 第五章 結論 100 參考資料 103

    1. S. Nakamura “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes”, Science, 281, 956 (1998)
    2. M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K.
    Deguchi, M. Sano, T. Mukai, “InGaN-based nearultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode”, Japanese Journal of Applied Physics, 41, L1431 (2002)
    3. Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, K. Yoshino, “Observation of spectral narrowing and emission energy shift in organic electroluminescent diode utilizing 8-hydroxyquinoline aluminum/aromatic diamine multilayer structure”, Applied Physics Letters, 63, 1871 (1993)
    4. G. W. Ford, W. H. Weber, “Electromagnetic interactions of molecules with metal surface”, Physics rep, 113, 195, (1984)
    5. P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, W. L. Barnes, “Surface Plasmon Mediated Emission From Organic Light Emitting Diodes”, Advanced Materials, 14, 1393 (2002)
    6. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum", Philosophers' Magazine, 4, 396 (1902)
    7. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces”, Journal of the Optical Society of America A, 31, 213 (1941)
    8. A. Hessel, A. A. Oliner, “A new theory of Wood's anomalies on optical gratings”, Applied Optics 4, 1275 (1965).
    9. H. Reather, “Surface Plasmons on smooth and Rough Surfaces and on Gratings”, Springer-Verlag, New York (1986)
    10. H. Reather, “Physics of Thin Film: Advances in Research and Development”, vol.9, Academic Press, Orlando (1976)
    11. O. Sqalli, I. Utke, P. Hoffmann, F. Marquis-Weible, “Gold elliptical nanoantennas as probes for near field optical microscopy”, Journal of Applied Physics, 92, 1078 (2002)
    12. A. Schultz, “Plasmon resonant particles for biological detection”, Current Opinion in Biotechnology 14, 13 (2003)
    13. M. Moskovits, “Surface-enhanced spectroscopy”, Reviews of Modern Physics, 57, 783 (1985)
    14. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, “Surface Plasmon enhanced light emitters based on InGaN quantum wells”, Nature Material, 3, 601 (2004).
    15. A. Köck, E. Gornik, M. Hauser, M. Beinstingl, “Strongly directional emission from AlGaAs/GaAs light emitting diodes”, Applied Physics Letters, 57, 2327 (1990)
    16. I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, S. P. DenBaars, “Coupling of InGaN quantum well photoluminescence to silver surface plasmons”, Physical Review B, 60, 11564, (1999)
    17. J.H. Song, T. Atay, S. Shi, H. Urabe, A. V. Nurmikko, “Large Enhancement of Fluorescence Efficiency from CdSe/ZnS Quantum Dots Induced by Resonant Coupling to Spatially Controlled Surface Plasmons”, Nano Letters, 5, 1577 (2005)
    18. D. K. Gifford, D. G. Hall, “Extraordinary transmission of organic photoluminescence through an otherwise opaque metal layer via surface plasmon cross coupling”, Applied Physics Letters, 80, 3679 (2002)
    19. William L. Barnes1, Alain Dereux2 & Thomas W. Ebbesen, “Surface plasmon subwavelength optics”, Nature 424, 14 (2003)
    20. T. Iwai, G. Mizutani, “Optical second harmonic spectroscopy of reconstructed Au 100 and 111 surfaces ”, Physical Review B 72, 233406 (2005)
    21. Liebsch, A, “Surface Plasmon dispersion of Ag”, Physical Review Letters, 71, 145 (1998)
    22. R. J. Herickhoff, W. F. Hanson, E. T. Arakawa, R. D. Birkhoff. Physical Review 139, 1455A (1965)
    23. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of e and m”, Soviet Physics Uspekhi, 10, 509 (1968)
    24. W. C. Tan, . W. Preist, J. R. Sambles, N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings”, Physical Review B 59, 12661 (1998)
    25. J. A. Porto, F. J. Garcia Vidal, J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits”, Physical Reveiw Letters 83, 2845 (1999)
    26. S.R. J. Brueck, V. Diadiuk, T. Jones, W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves”, Applied Physics Letters 46, 915 (1985)
    27. D. C. Cullen, C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings.”, Biosensors 3, 211 (1987)
    28. G. Hass., Applied Optics and Optical Engineering, vol. III, Kingslake, R., Ed., Academic Press, New York (1965)
    29. C. F. Bohren, D. R. Huffman, “Absorption and scattering of light by small particles”, Wiley Interscience, New York (1983)
    30. Edward D. Palik, Handbook of Optical Constants of Solids, Academic Press, San Diego (1985)
    31. L. D. Feldheim, C. A. Foss, “Metal nanoparticles: synthesis, characterization, and applications”, Marcel Dekker, New York (2002)
    32. S. Link, M. A. El-Sayed, “Steady-state and time-resolved optical properties of metallic nanoparticles: The surface plasmon absorption as an analytical tool to investigate particle properties”, International Reviews in Physical Chemistry, 19, 409 (2000)
    33. J. Yguerabide, E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications”, Analytical Biochemistry 262, 137 (1998)
    34. H. K. Park, J. K. Yoon, K. Kim “Novel fabrication of Ag thin film on glass for efficient surface-enhanced Raman scattering”, Langmuir, 22, 1626 (2006)
    35. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, S. Schultz, “Shape-dependent resonance”, Journal of Chemical Physics, 116, 6755 (2002)
    36. M. D. Malinsky, K. L. Kelly, G. C. Schatz, R. P. Van Duyne, “Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343 ( 2001)
    37. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles”, Optics Communications, 220, 137 (2003)
    38. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations”, Physical Review B, 74, 155435 (2006)
    39. H. R. Stuart, D. G. Hall, “Enhanced dipole dipole interaction between elementary radiators near a surface”, Physical Review Letters, 80, 5663, (1998)
    40. N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, F. R. Aussenegg, “Enhanced substrate induced coupling in two dimensional gold nanoparticle arrays”, Physical Review B, 66, 245407 (2002)
    41. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time resolved photoluminescence spectroscopy”, Applied phys letters, 87, 071102 (2005)
    42. C. D. Geddes, J. R. Lakowicz1, “Metal-Enhanced Fluorescence”, Journal of Fluorescence, 12, 2 (2002)
    43. T. D. Neal, K. Okamoto, A. Scherer, M. S. Liu, A. K. Y. Jen, “Time resolved photoluminescence spectroscopy of surface plasmon enhanced light emission from conjugate polymers”, Applied physics letters, 89, 221106 (2006)
    44. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time resolved photoluminescence spectroscopy”, Applied Physics Letters 87, 071102 (2005)
    45. T. W. Lee, S. K. Gray” Regenerated surface plasmon polaritons” Applied Physics Letters 86, 141105 (2005)
    46. B. T. Draine, P. J. Flatau, DDSCAT6.1 (University of California at Dan Diego, California (2004)
    47. B. T. Draine, J. Goodman, “Beyond Clausius-Mossotti: Wave Propagation on a Polarizable Point Lattice and the Discrete Dipole Approximation”, The Astrophysical Journal, 405, 685 (1993)
    48. P. Rai-Choudhury, "SPIE Handbook of Microlithography, Micromachining and Micro fabrication”, Microlithography Volume3, SPIE Optical Engineering Press (2000)
    49. A. A. Tseng , Kuan Chen, Chii. D. Chen, Kung J. Ma, “Electron Beam Lithography in Nanoscale Fabrication: Recent Development” IEEE Transactions on Electronics Packaging Manufacturing , 26, 141 (2003)
    50. JC Nabity Lithography Systems, Nanometer Pattern Generation System, http://www.jcnabity.com/
    51. Aicha A.R. Elshabini-Riad, Fred D. Barlow “Thin film technology handbook”, McGraw-Hill, Boston (1998)
    52. R. Grisorio, G. P. Suranna, P. Mastrorilli, C. F. Nobile, “Insight into the Role of Oxidation in the Thermally Induced Green Band in Fluorene-Based Systems” Advanced Functional Materials, 17, 538 (2007)
    53. G. L. Liu, J. Kim, Y. Lu, L. P. Lee, “fluorescence enhancement of quantum dots enclosed in Au nanopockets with subwavelength aperture”, Applied physics Letters, 89, 241118 (2006)
    54. J. H. Song, T. Atay, S. Shi, H. Urabe, A. V. Nurmikko, “Large enhancement of fluorescence efficiency fron CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons”, Nano Letters, 5, 1557 (2005)
    55. S. E. Irvine, A. Y. Elezzabi, “Surface-plasmon-based electron acceleration”, Physical Review A, 73, 013815 (2006)
    56. T. Matsui, A. Agrawal, A. Nahata, Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures”, Nature, 446, 517 (2007)
    57. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbsen, H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes”, Physical Review B 58, 6779 (1998)
    58. T. Matsui, A. Agrawal, A. Nahata, Z. V. Vardeny, “Transmission resonances through aperiodic arrays of sub wavelength apertures”, Nature, 446, 29, 517 (2007)
    59. H. G. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes”, Physical review B, 58, 6779 (1998)
    60. Y. J. Hung, I. I. Smolyaninov, C. C. Davis, H. C. Wu, “Fluorescence enhancement by surface gratings”, Optics Express, 14, 22, 10825 (2006)
    61. P. I. Lee, Steve L. C. Hsu, R. F. Lee, submitted
    62. D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, M. Fukui, “Numerical analysis of coupled wedge plasmons in a structure of two wedges separated by a gap”, Journal of Applied Physics, 100, 013101 (2006)
    63. 王灯利、陳啟昌、李建階,”表面電漿對於半導體發光元件光萃取效率的影響之探討” 中央大學光電科學研究所,碩士論文,2006

    下載圖示 校內:2009-07-17公開
    校外:2009-07-17公開
    QR CODE