| 研究生: |
張力慈 Chang, Li-Tzu |
|---|---|
| 論文名稱: |
淨零路徑下的造林增匯策略與權衡評估-以臺南市為例 Forest Carbon Sequestration Strategy and Trade-off Assessment under the Net-Zero Pathway: A Case Study of Tainan City |
| 指導教授: |
張學聖
Chang, Hsueh-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 都市計劃學系 Department of Urban Planning |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 淨零碳排 、自然碳匯關鍵策略 、森林碳匯 、生態系統服務 、權衡評估 |
| 外文關鍵詞: | Net Zero, natural carbon sinks, forest carbon sequestration, ecosystem services, PPF method, trade-off evaluation |
| 相關次數: | 點閱:74 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全球氣候變遷是當前面臨的重大挑戰之一,為此「臺灣2050淨零轉型自然碳匯關鍵戰略行動計畫」規劃於2040年達到累計造林66,000公頃的目標,藉以提升碳匯量。然而,過往制定造林政策時,常因缺乏配套與相關政策的協調與整合,導致造林於錯誤的地點與時機,也間接引發用地排擠與土地競租之現象,致使造林策略效益不彰。因此各方逐漸意識到,除了訂定「目標」之外,達成目標的「途徑」更需被重視。未來在淨零路徑下的造林增匯策略,更應避免造林與相關政策間之競合,納入其他同等重要的社會和生態價值,共同衡量其效益。
鑒於上述,本研究欲以系統性之觀點檢視淨零路徑下的造林策略,並以台南市為例,選擇能將多元價值共同衡量的生態系統服務評估方法作為指標,依農業局條件盤點低利用土地之造林潛力區位,並分析造林、農業、生態保護政策情境下的碳吸存、農業生產與棲地品質效益變化。也藉由土地利用變遷,進一步將政策情境對周邊環境帶來的間接影響納入考量,以回應不同造林策略的短期及中長期影響差異。並透過生產可能性邊界(PPF)作為權衡評估指標,對各情境效益進行衡量,分別探討效益最大化觀點的權衡潛力及資源分配平衡觀點的權衡強度指標,藉以揭示不同造林政策情境如何影響效益和權衡關係,並將結果回應至短期造林策略建議,也為未來中長期的空間策略部署提供依據。
研究結果顯示,由短期影響來看,造林導向(RE)政策於農業局提出的潛力地點新植造林,雖其於整體生態系統服務表現相對良好,但與農業政策產生較為明顯之抵觸,而從中長期影響來看,雖然生態導向(CB)於總效益略遜於造林及農業導向(AR)情境,卻相對能平衡且共同經營三種政策目標。而進一步由權衡關係之空間分布來看,農業生產效益變化主要呈現在超限利用土地與邊際農地周邊,而棲地品質效益變化則呈現於休耕農地及山坡地周邊,進而造成牴觸關係加劇之趨勢。因此,面對擴大造林策略應給予相對應之配套,未來則更需由空間計畫進行部署,以成長管理精神明確界定三項政策發展目標及範圍,避免造林與農業、生態導向政策間的競合關係加劇。在未來的造林增匯策略中,除了造林政策之碳匯效益之外,也需與其他土地利用需求中找到平衡,以更全面的方式評估造林策略對環境和社會利益的影響,促使未來的土地利用策略能在邁向淨零的路徑上更有效率,也實現生態系統服務的多功能經營效果。
Global climate change is a significant challenge. To address this, the "Taiwan’s 2050 Net-Zero Transition Key Strategic Action Plan for Carbon Sinks" aims to achieve 66,000 hectares of afforestation by 2040 to enhance nature carbon sequestration. However, past afforestation policies often lacked coordination, leading to ineffective implementation and land use conflicts. Future strategies should avoid these conflicts and incorporate social and ecological values.
This study uses Tainan City as a case to assess afforestation strategies. By identifying potential areas and analyzing changes in carbon sequestration, agricultural production, and habitat quality under different scenarios, the short-term and long-term impacts are compared. The Production Possibility Frontier (PPF) method is used to evaluate the benefits and trade-offs of each scenario.
Results show that short-term afforestation at potential sites proposed by the Agricultural Bureau has good ecosystem service performance but competes with agricultural policies. And the long-term ecological policies, although slightly inferior in total benefits, can balance multiple goals. Spatial distribution analysis indicates that new afforestation's environmental benefits are influenced by changes in farmland area, with agricultural production benefits around exceeding utilization and marginal farmland, and habitat quality benefits around fallow farmland and hillsides. Future spatial planning should clearly define development goals to avoid intensifying competitive relationships between afforestation, agriculture, and ecological policies.
In summary, future afforestation and carbon sequestration strategies must balance policy benefits with other land use demands. A comprehensive evaluation of their impacts on environmental and social benefits is essential to making land use strategies more efficient on the path to net-zero.
一、英文文獻
Anputhas, M., Janmaat, J., Nichol, C., & Wei, A. (2019). If they come, where will we build it? Land-use implications of two forest conservation policies in the Deep Creek Watershed. Forests, 10(7), 581.
Assessment, M. E. (2001). Millennium ecosystem assessment. Millennium Ecosystem Assessment.
Bagstad, K. J., Semmens, D. J., Waage, S., & Winthrop, R. (2013). A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosystem services, 5, 27-39.
Bateman, I. J., Anderson, K., Argles, A., Belcher, C., Betts, R. A., Binner, A., Brazier, R. E., Cho, F. H., Collins, R. M., & Day, B. H. (2023). A review of planting principles to identify the right place for the right tree for ‘net zero plus’ woodlands: Applying a place‐based natural capital framework for sustainable, efficient and equitable (SEE) decisions. People and Nature, 5(2), 271-301.
Bradfer‐Lawrence, T., Finch, T., Bradbury, R. B., Buchanan, G. M., Midgley, A., & Field, R. H. (2021). The potential contribution of terrestrial nature‐based solutions to a national ‘net zero’climate target. Journal of Applied Ecology, 58(11), 2349-2360.
Burke, W. J., Merrill, H. M., Schweppe, F. C., Lovell, B. E., McCoy, M. F., & Monohon, S. (1988). Trade off methods in system planning. IEEE Transactions on Power Systems, 3(3), 1284-1290.
Chen, T., Peng, L., & Wang, Q. (2022). Response and multiscenario simulation of trade-offs/synergies among ecosystem services to the Grain to Green Program: a case study of the Chengdu-Chongqing urban agglomeration, China. Environmental Science and Pollution Research, 29(22), 33572-33586.
Chisanga, C. B., Shepande, C. C., & Nkonde, E. (2022). CA-Markov approach in dynamic modelling of LULCC using ESA CCI products over Zambia. In Geographic Information Systems and Applications in Coastal Studies. IntechOpen.
Cortinovis, C., Olsson, P., Boke-Olén, N., & Hedlund, K. (2022). Scaling up nature-based solutions for climate-change adaptation: Potential and benefits in three European cities. Urban Forestry & Urban Greening, 67, 127450.
Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'neill, R. V., & Paruelo, J. (1997). The value of the world's ecosystem services and natural capital. nature, 387(6630), 253-260.
Daily, G. C. (1997). Introduction: what are ecosystem services. Nature’s services: Societal dependence on natural ecosystems, 1(1).
De Groot, R. S., Wilson, M. A., & Boumans, R. M. (2002). A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological economics, 41(3), 393-408.
Doelman, J. C., Stehfest, E., van Vuuren, D. P., Tabeau, A., Hof, A. F., Braakhekke, M. C., Gernaat, D. E., van den Berg, M., van Zeist, W. J., & Daioglou, V. (2020). Afforestation for climate change mitigation: Potentials, risks and trade‐offs. Global Change Biology, 26(3), 1576-1591.
Eggleston, H., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K. (2006). 2006 IPCC guidelines for national greenhouse gas inventories.
Feng, Q., Zhao, W., Fu, B., Ding, J., & Wang, S. (2017). Ecosystem service trade-offs and their influencing factors: A case study in the Loess Plateau of China. Science of the Total Environment, 607, 1250-1263.
Forsius, M., Kujala, H., Minunno, F., Holmberg, M., Leikola, N., Mikkonen, N., Autio, I., Paunu, V.-V., Tanhuanpää, T., & Hurskainen, P. (2021). Developing a spatially explicit modelling and evaluation framework for integrated carbon sequestration and biodiversity conservation: Application in southern Finland. Science of the Total Environment, 775, 145847.
Hamad, R., Balzter, H., & Kolo, K. (2018). Predicting land use/land cover changes using a CA-Markov model under two different scenarios. Sustainability, 10(10), 3421.
IPCC. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Ipcc.
Kennedy, M. C., Ford, E. D., Singleton, P., Finney, M., & Agee, J. K. (2008). Informed multi‐objective decision‐making in environmental management using Pareto optimality. Journal of Applied Ecology, 45(1), 181-192.
Logofet, D. O., & Lesnaya, E. V. (2000). The mathematics of Markov models: what Markov chains can really predict in forest successions. Ecological modelling, 126(2-3), 285-298.
Ma, S., Ai, B., & Nian, P. (2014). Pre-assessment and warning of land use planning with constrained cellular automata. Geogr. Geo-Inf. Sci, 30, 51-55.
Megahed, Y., Cabral, P., Silva, J., & Caetano, M. (2015). Land cover mapping analysis and urban growth modelling using remote sensing techniques in Greater Cairo Region—Egypt. ISPRS International Journal of Geo-Information, 4(3), 1750-1769.
Pachauri, R. K., & Reisinger, A. (2007). IPCC fourth assessment report. IPCC, Geneva, 2007, 044023.
Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., & Deadman, P. (2003). Multi-agent systems for the simulation of land-use and land-cover change: a review. Annals of the association of American Geographers, 93(2), 314-337.
Pike, S. (2020). Tree Suitability Modelling–Planting Opportunities for Sessile Oak and Sitka.
Pontius Jr, R. G. (2000). Comparison of categorical maps. Photogramm. Eng. Remote Sens, 66(20), 0.
Pontius, R. G., Boersma, W., Castella, J.-C., Clarke, K., de Nijs, T., Dietzel, C., Duan, Z., Fotsing, E., Goldstein, N., & Kok, K. (2008). Comparing the input, output, and validation maps for several models of land change. The Annals of Regional Science, 42, 11-37.
Rees, W. (2008). Comparing the spatial content of thematic maps. International Journal of Remote Sensing, 29(13), 3833-3844.
Schroth, G., da Fonseca, G. A., Harvey, C. A., Gascon, C., Vasconcelos, H. L., & Izac, A.-M. N. (2013). Agroforestry and biodiversity conservation in tropical landscapes. Island press.
Seto, K. C., Churkina, G., Hsu, A., Keller, M., Newman, P. W., Qin, B., & Ramaswami, A. (2021). From low-to net-zero carbon cities: The next global agenda. Annual review of environment and resources, 46, 377-415.
Sharp, Richard & Chaplin-Kramer, Rebecca & Wood, Spencer & Guerry, Anne & Tallis, Heather & Ricketts, Taylor & Nelson, Erik & Ennaanay, Driss & Wolny, Stacie & Olwero, Nasser & Vigerstol, Kari & Pennington, Derric & Mendoza, Guillermo & Aukema, Juliann & Foster, John & Forrest, Jessica & Cameron, D. Richard & Arkema, Katie & Lonsdorf, Eric & Douglass, James. (2018). InVEST User’s Guide. 10.13140/RG.2.2.32693.78567.
TEEB, R. O. (2010). Mainstreaming the Economics of Nature. TEEB Geneva, Switzerland.
Terrado, M., Sabater, S., Chaplin-Kramer, B., Mandle, L., Ziv, G., & Acuña, V. (2016). Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Science of the Total Environment, 540, 63-70.
WWF. (2023). The Forest Pathways Report. Gagen, M.H., Dudley, N., Jennings, S., Timmins, H.L. Baldwin- Cantello, W., D'Arcy, L., Dodsworth, J.E., Fleming, D., Kleymann, H., Pacheco, P., Price, F., (Lead Authors). WWF, Gland, Switzerland
Yang, W., Jin, Y., Sun, T., Yang, Z., Cai, Y., & Yi, Y. (2018). Trade-offs among ecosystem services in coastal wetlands under the effects of reclamation activities. Ecological indicators, 92, 354-366.
Yiru, X., Peichao, G., Xiangyu, W., Changqing, S., Changxiu, C., Sijing, Y., & Shi, S. (2020). Exploring the trade-offs between grain yield and ecological benefits in an economic development context: Land-use optimization of Heilongjiang province. Journal of Beijing Normal University (Natural Science), 56(6), 873-881.
Zhao, Y., Wang, M., Lan, T., Xu, Z., Wu, J., Liu, Q., & Peng, J. (2023). Distinguishing the effects of land use policies on ecosystem services and their trade-offs based on multi-scenario simulations. Applied Geography, 151, 102864.
Zhu, A.-X., Wang, R., Qiao, J., Qin, C.-Z., Chen, Y., Liu, J., Du, F., Lin, Y., & Zhu, T. (2014). An expert knowledge-based approach to landslide susceptibility mapping using GIS and fuzzy logic. Geomorphology, 214, 128-138.
二、中文文獻
吳振發(2011)。臺灣鄉村景觀變遷模擬之CLUE-s模式最佳參數試驗。地理學報,(62),頁103-125。
喬曉楠、彭李政(2021)。碳达峰, 碳中和与中国经济绿色低碳发展。中国特色社会主义研究, 3(4), 頁43-56。
姚鶴年(2004)。台灣林業歷史課題系列(六)—台灣超量伐木之時代背景。台灣林業, 第30卷第2期,頁51-61。
张晨星、徐晶晶、温静、杨新兵、王佳欢、赵波(2021)。基于 CA-Markov 模型和 MCE 约束的白洋淀流域景观动态研究。 Journal of Agricultural Resources & Environment/Nongye Ziyuan yu Huanjing Xuebao, 38(4)。
張忠利(2022)。 “双碳” 目标的国土空间规划法制响应。China Population Resources & Environment。 32(12)。
張政亮(2006)。 馬可夫鏈模型 (Markvo Chain Model) 在地理學研究之運用. 國教新知, 53(1), 頁72-86。
張曜麟(2005)。都市土地使用變遷之研究。國立成功大學都市計劃學系碩士論文。臺南市。
張良齊(2014)。結合羅吉斯迴歸分析與細胞自動機預測紅樹林變遷之研究。 國立中央大學土木工程學系碩士論文。桃園市。
施乃禎(2022)。綠基盤規劃方案因應氣候變遷之綜效與權衡分析 -以臺北都會區為例。國立臺北大學都市計劃研究所碩士論文。新北市。
李俊霖 (2008)。社經代謝作用與土地利用變遷之整合與空間動態。國立臺北大學都市計劃研究所博士論文。新北市。
李少英、刘小平、黎夏、陈逸敏(2017)。土地利用变化模拟模型及应用研究进展。遥感学报。2017,21(3) , 頁329-340。DOI: 10.11834/jrs.20176159。
李柏均(2013)。空間規劃因應氣候變遷之權衡取捨與綜效之研究─以台北都會區為例。國立臺北大學都市計劃研究所碩士論文。新北市。
林俊成(2007)。世界森林資源碳匯估算結果分析。臺灣林業, 33(4), 頁67-71。
林國慶、柳婉郁(2007)。全民造林政策之執行成果與政策分析。農業與經濟,(38),頁31-65。
林國慶、柳婉郁、陳昱安(2009)。全民造林停止後山坡地造林政策之分析。中華林學季刊,42(4),頁577-594。
林大利、丁宗蘇(2014)。臺灣的物種密度世界第一嗎?論一個臺灣特有且普遍的偽科學。自然保育季刊,(85),頁4-11。
林子閎(2019)。共效益觀點下綠色基盤設施規劃與協同權衡效應之研究─以鹽水溪流域為例。國立成功大學都市計劃學系碩士論文。臺南市。
林怡諄(2007)。農地地主參與造林獎勵政策之決策行為分析。國立臺灣大學 農業經濟學研究所碩士論文。臺北市。
林明鏘(2011)。混農林業政策及法令分析. 國立臺灣大學生物資源暨農學院實驗林研究報告, 25(4), 頁223-233。
柳婉郁、江怡樺、 林信維(2020)。考慮碳吸存機會成本下碳權價格之經濟分析. 綠色經濟期刊, 6, 頁18-60。
梁瑞玲(2014)。土地利用管理策略對生態系統服務影響之研究。國立成功大學都市計劃學系碩士論文。臺南市。
沈才煜(2011)。 2000 年至 2005 年台灣各鄉鎮參與造林計畫影響因素之研究。國立臺灣大學森林環境暨資源學研究所碩士論文。臺北市。
秦寂梅(2022)。沿海高風險區後撤性調適策略對洪災風險變遷之影響—以嘉義縣東石鄉與布袋鎮為例。國立成功大學都市計劃學系碩士論文。臺南市。
莊晴(2019)。森林生態系統服務給付之研究:選擇試驗法與成本效益法之應用。國立中興大學森林學系所碩士論文。臺中市。
詹為巽、盧學甫、林俊成(2019)。森林生態系服務效益評估―InVEST 之運用. 林業研究專訊, 26(5),頁54-57。
詹為巽、鄭可風、林俊成、邱祈榮(2020)。 運用 InVEST 模擬土地利用變化對生態系服務效益之影響-以蓮華池地區為例. 中華林學季刊, 53(1),頁 1-17。
顧嘉安(2010)。以馬可夫鍊細胞自動機模型模擬極端洪水對都市土地利用型態之影響─以台北市為例。國立成功大學都市計劃學系碩士論文。臺南市。
魏良諭(2020)。空間計畫回應氣候變遷比較分析之研究-以台南市為例。國立成功大學都市計劃學系碩士論文。臺南市。
黃韜(2012)。地景變遷對生態系統服務影響之研究。國立臺灣大學生物環境系統工程學研究所碩士論文。臺北市。