| 研究生: |
張立民 Chang, LI-Min |
|---|---|
| 論文名稱: |
利用微機電製程技術設計平行流動之擴散分離式微管道 Fabrication of Micro-Channels Used in Separation by Diffusion |
| 指導教授: |
李定智
Lee, Denz |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 微機電系統、擴散分離、PDMS、微管道 |
| 外文關鍵詞: | microchannels, PDMS, MEMS, diffusion |
| 相關次數: | 點閱:85 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文研究的目的在於利用微機電系統製程技術,實際製作微小化結構,針對流經微管道之不同粒徑的粒子,藉粒子擴散運動達到分離之效果,探討微管道變化與粒子擴散分離間的影響。製作方式是以塗佈感光性光阻,利用微影蝕刻方式在矽晶圓轉移圖案,搭配對準方式翻模製成的polydimethylsiloxane (PDMS)接合於玻璃片上,成為本研究的微管道系統,從平面注入與匯合管道改變至利用堆疊光阻圖案方式在單一矽晶圓上製作三維結構,設計匯合管道長度為34 mm,寬度為2 mm,擴散總高度為100 μm,應用在含0.1 μm與 2 μm粒子的溶液,此微管道容許微量的溶液,在不超過玻璃片尺寸下達到擴散分析之效果,最後利用有限範圍探討快速分離、擴散之產物效率高的設計參數。
在物理理論方面,討論不同尺度粒子流經匯合管道時,會經歷阻力、粒子的擴散等,本文並以不同的管道結構作測試。同時發現管道設計擴散高度參數的增加將提高流體的對流效應,降低粒子停留管道時間與擴散效果,而寬度的增加卻會使粒子在管道內的擴散效應相對與流場的對流比較,是有增益的效果;同時,微管道內檢測溶液的不同,在低雷諾數環境下,溶液的黏滯度與粒子擴散效果是有關的,粒子擴散較易發生於相對較低黏滯度的溶液中;藉由微管道中粒子本身之擴散係數與管道幾何形狀或壓力的探討;整合微製造、微流體、微圖形結構技術達成實驗室晶片之擴散分析的構想。
The study describes a Micro Electro Mechanical Systems,(MEMS)fabrication technique for building three-dimensional(3-D)microchannels using polydimethylsiloxane(PDMS)elastomer. The master for each layer is formed on a silicon wafer using an epoxy-based photoresist. PDMS is cast against the master producing molded layers containing channels. Miniaturization of micro fluidic channels assays of channels change, such as length, height and width. We have designed and built a channel for separation by diffusion. The length of the confluence channel is 34 mm, the width is 2 mm and the height is 100 μm, Experiments were performed at flow rates of 5 μl/min. In this condition, using 0.1 μm and 2 μm sphere in micro-channel, our device allows quantities of fluid in picoliter to be analyzed on devices. We also set the constraint to optimize the geometry which can maximize the volume flow rate of product stream.
Theoretical studies of different size particles in the confluence channel have been performed as function of the drag force and diffusivity. The results were validated using different microchannels in two- and three- dimensional channels. We found that the increase of length of channel and diffusion distance can enhance the convection in flow, and suppress diffusion effect in the microchannel. The separation by diffusion can be implemented in a microfluid system in which the dimensions of the channels are sufficiently small that only low-Reynolds-number (Re<<1) flow can occur. Changing the geometry or pressures can control the microchannel flows. The channel combines microfabrication, microfluidic and surface micropatterning techniques for integration of the device into a “lab-on-a-chip” diffusive analysis system.
1.Richard P. Feynman “There's Plenty of Room at the Bottom” delivered at the annual meeting of the American Physical Society, Pasadena, CA, December 29, 1959
2.A biography, as wall as personal account of Lavoister's chemical research, can be found in the great Books of western World, Encyclopedia Brittanics, University of Chicago, 45, 1952
3.K. Seiler, D. J. Harrison and A. Manz, “Planar Chips Technology for Miniaturization and Integration of Separation Techniques into Monition Systems” Journal of Chromatography, 593, 253-258, 1992
4.Williams, P. S., S. Levin, T. Lenczycki and J, C. Giddings. “Continuous SPLITT Fractionation Based on a Diffusion Mechanism” Industrial and Engineering Chemistry Research, 31,2172-2181,1992
5.Paul Yager, James P. Brody, Mark R. Holl, Fred K. Forster and Paul C. Galambos. “Microfabricated Differential Extraction Device and Method” U. S. Patent No. 5,932,100, Issued August 3 1999
6.Masato Ikegawa and Junichi Kobayashi, “Deposition Profilation Using the Direct Simulation Monte Carol; Method” Journal of the Electrochemical Society, 136(10), 2982-2986, 1989
7.Li. A and Ahmadi, G “Aerosol Particle Deposition with Electrostatic Atteaction in a Trubulent Channel Flow” Journal of Colloid and Interface Science, 158,476-482,1993
8.James P. Brody, Paul Yager “Diffision-Based Extraction in a Microfabricated Device” Sensors and Actuators, 58(1), 13–18,1997
9.Holl, M. R., Galambos, P., Forster, F. K., Brody, J. P., Afromowitz, M. A., and Yager, P., “Optimal Design of a Microfabricated Diffusion-Based Extraction Device”, Proceedings of ASME Meeting, American Society of Mechanical Engineers, 59, 189-195,1996
10.X. F. Peng & B.X. Wang “Forced-Convection & Boiling Characteristic in Microchannel” Heat transfer 1998 Vol.1 Proceeding of 11th IHTC
11.David Pfund & Alireza Shekarriz “Pressure Drop Measurement in a Microchannel” American Society of Mechanical Engineers, 66, 1998
12.J. Byung-Ho, L.M. Van Lerberghe, K.M. Motsegood, D.J. Beebe, “Three-Dimensional Micro-Channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer” Journal of Microelectromechanical Systems, 9(1), 76-81, 2000
13.Anand Gadre, Mark Kastantin, Sheng Li and Reza Ghodssi, “An Integrated BioMEMS Fabrication Technology” Proceedings of International Semiconductor Device Research Symposium (ISDRS), Washington D.C., 186-189, 2001
14.Teruo Fujii “PDMS-Based Microfluidic Devices for Biomedical Applications” Microelectronic Engineering, 61-62, 907-914, 2002,
15.Andrew Evan Kamholz and Paul Yager “Molecular Diffusive Scaling Laws in Pressure-Driven Microfluidic Channels: Deviation from One-Dimensional Einstein Approximations” Sensors and Actuators B: Chemical, 82(1), 117-121, 2002
16.Hengzi Wang, Pio Iovenitti, Erol Harvey and Syed Masood “Optimizing Layout of Obstacles for Enhanced Mixing in Microchannels” Smart Materials & Structures, 11,662-667, 2002
17.林育德,“平面式微介電泳系統之研發與其在生物微粒分離上之應用”國立成功大學醫學工程研究所碩士論文, 2002
18.Taylor, A. M., Rhee, S. W., Tu, C. H., Cribbs, D. H., Cotman, C. W., Jeon, N. Li., “Microfluidic Multicompartment Device for Neuroscience Research” American Chemical Society, 19(5),1551-1556,2003
19.Farrington Danielsand and Robert A. Alberty, “Physical Chemistry” 1961
20.Schiller L. and Nauman A. Z., Ver. Deut. Ing.(VDI), 77, 318-320,1933
21.Gobby D., Angeli P. and Gavriilidis A., “Mixing Characteristics of T-type Microfluidic Mixers” Journal of Micromechanics and Microengineering, 11, 126-132, 2000
22.Bernhard H. Weigl, Ron L. Bardell, and Catherine R. Cabrera, “Lab-On-A-Chip for Drug Development” Advanced Drug Delivery Reviews, 55, 349-377, 2003
23.W. Kern and D. A. Poutinen, “Cleaning Solution Based on Hydrogen Peroxide for Use in Semiconductor Technology” RCA Rev., 187, 1970
24.W. Kern, “Purifying Si and SiO2 Surfaces with Hydrogen Peroxide” Semicondustor International, 94, 1984
25.G. W. Rubloff, “Defect Microchemistry in SiO2/Si Structures” Journal of Vacuum Science & Technology A Vacuum Surfaces and Films, 8, 1857, 1990
26.M. Shaw, D. Nawrocki, R. Hurditch and D. Johnson, “Improving the process capability of SU-8” MicroChem Corp., Newton MA, 02464
27.DATA Sheet for NANOTM SU-8 Negative Tone Photoresists, Formulations 50 & 100. released by MICRO-CHEM. Corp
28.N. LaBianca and J. Delorme, “High aspect ratio resist for thick film applications”, Proceedings of SPIE , 2438, 846-852, 1995
29.DATA Sheet for XP SU-8 Developer. released by MICRO-CHEM. Corp, 20 May 1998
30.M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, D. Johnson, “On the Aging of Oxygen plasma-trearted polydimethylsiloxane Surfaces” Journal of Colloid and Interface Science, 137(3), 11-23, 1990
31.J. Garra, T. Long, T. Schneider and R. White, M. Paranjape, “Dry Etching of Polydimethylsiloxane for microfluidic systems” Journal of Vacuum Science & Technology A Vacuum Surfaces and Films, 20(3), 975-982, 2002
32.Pontus Linderholm, Peter Åsberg, “3D / Multi-Layered PDMS Microfluidic Systems” Project Report, 2004