| 研究生: |
葉東龍 Ye, Dong-Long |
|---|---|
| 論文名稱: |
應用變轉速滾珠螺桿複合機構於劍桅式無梭織布機之研究 Application of Variable-Input Speed Ball-Screw Compound Mechanism on A Rapier Type Shuttleless Loom |
| 指導教授: |
顏鴻森
Yan, Hong-Sen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 劍桅式無梭織布機 、引緯機構 、變轉速輸入 、滾珠螺桿複合機構 、運動設計 、動力設計 |
| 外文關鍵詞: | Rapier type shuttleless loom, Weft insertion mechanism, Variable input speed, Ball-screw compound mechanism, Kinematic design, Dynamic design |
| 相關次數: | 點閱:202 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統上,劍桅式無梭織布機是使用變導程螺桿與一組曲柄滑塊機構來驅動劍帶輪完成緯紗緯入工作,然而變導程螺桿不僅外形設計困難,製造加工成本也較為昂貴,若需要更換螺桿或重新設計螺桿輪廓,則必須耗費許多成本。為解決使用變導程螺桿所帶來的設計與製造問題,本研究以等導程滾珠螺桿搭配變轉速輸入理論,使滾珠螺桿複合機構具備變轉速輸出特性,以符合紡織機引緯機構運動輸出的設計需求與限制。
首先推導滾珠螺桿複合機構的運動方程式,以及扭矩方程式,作為本研究之設計基礎;接著考量到輸出運動之連續性,使用Bezier曲線作為滾珠螺桿複合機構之輸入轉速函數,並透過最佳化設計方法,設計出一系列符合引緯機構設計需求與限制之轉速曲線。另外,利用商用軟體ADAMS模擬滾珠螺桿複合機構的運動與動力特性,並從模擬結果,驗證了理論設計之正確性。隨後,本研究建立一套伺服滾珠螺桿複合機構,控制伺服馬達產生設計之轉速輸入曲線,並利用量測元件讀取機構輸出的運動特性,最後從實驗結果,證實了變轉速滾珠螺桿複合機構應用於劍桅式無梭織布機引緯機構的可能性,並有效解決了使用變導程螺桿的缺點。
Traditionally, a rapier type shuttleless loom usually uses a variable-pitch screw mechanism and a slider-crank mechanism to drive a gear-wheel to complete the motion of the weft insertion. However, if a designer needs to replace the screw or redesign the contour of the variable-pitch screw mechanism, it is expansive in design and manufacturing. In order to solve the shortcomings by using the variable-pitch screw mechanisms, this work uses a constant-pitch ball-screw mechanism combining with the design concept of variable input speed to make the ball-screw compound mechanism achieve the characteristic of variable output speed, which also meets the design requirements and constraints of the output motion of the weft insertion mechanism.
Firstly, the equations of kinematic and dynamic characteristics for the ball-screw compound mechanism are derived as the foundation of design. Then, considering the continuity of motion, Bezier curve is used as the input speed function for the ball-screw compound mechanism. Based on optimal design, a set of input speed curves which meet the design requirements and constraints of the weft insertion mechanism are designed. Furthermore, the commercial software ADAMS is used to simulate the kinematic and dynamic characteristics of the ball-screw compound mechanism. The results of the simulation confirm the correctness of the design concept. On top of that, the results of the experiment established in this study prove the possibility of using the variable input speed control on this mechanism. Finally, the study shows the feasibility of application of the variable-input speed ball-screw compound mechanism on a rapier type shuttleless loom, which can solve the disadvantages of variable pitch screw mechanism.
[1] 李根煌,1983年11月1日,往復運動傳動機之傳動方法與自動成形反凸輪機構搭配裝置以應用於無梭織布機之緯線緯入驅動機構,中華民國專利,公告第54352號。
[2] 劉樹連,1985年9月16日,無梭織機劍帶輪之傳動機構,中華民國專利,公告第70577號。
[3] 張瑞昌,1985年11月1日,劍桅式無梭織布機驅動劍帶輪之新穎構造,中華民國專利,公告第71919號。
[4] 江林輝,1988年9月1日,變導程角螺桿傳動之引緯機構,中華民國專利,公告第103194號。
[5] 范揚昇,1992年6月,無梭織布機韌性劍帶驅動機構之構造設計,碩士論文,國立成功大學機械工程學系,台南。
[6] 顏鴻森、李榮顯、黃文敏、蔡明俊、邱顯堂、陳家豪、陳元方、陳朝光、王俊志、蘇演良、林昌進,1991年至1995年,劍桅式無梭織布機變導程螺桿傳動機構之電腦整合設計與製造,國科會專題研究計畫,國立成功大學機械工程學系,台南。
[7] W. M Hwang, H. S. Yan and R. S. Lee, 1994, Variable pitch cylindrical cam mechanism for controlling the motion of weft insertion members in shuttleless weaving looms, U.S. Patent No. 5,320,143.
[8] H. A. Rothbart, 1956, Cams: Design, dynamics and Accuracy, John Wiley & Sons, New York.
[9] D. Tesar and G. K. Matthew, 1976, The Dynamics Synthesis, Analysis, and Design of Modeled Cam Systems, Lexington Books.
[10] H. S. Yan and M. K. Fong, 1994, “An Approach for Reducing the Peak Acceleration of Cam-follower Systems Using a B-spline Representation,” Journal of the Chinese Society of Mechanical Engineers, Taipei, 15(2), pp. 48-55.
[11] H. S. Yan, M. H. Hsu, M. K. Fong and W. H. Hsieh, 1994, “A Kinematic Approach for Eliminating the Discontinuity of Motion Characteristics of Cam-follower Systems,” Journal of Applied Mechanisms & Robotics, 1(2), pp. 1-6.
[12] H. S. Yan, M. C. Tsai and M. H. Hsu, 1996.06, “A variable-speed method for improving motion characteristics of cam-follower systems,” ASME Transactions, Journal of Mechanical Design, Vol.118, No.2, pp.250-258.
[13] H. S. Yan, M. C. Tsai and M. H. Hsu, 1996.05, “An experimental study of the effects of cam speeds on cam-follower systems,” Mechanism and Machine Theory, Vol.31, No.4, pp.397-412.
[14] 白友中,1995年,凸輪機構之週期性轉速追蹤控制,碩士論文,國立成功大學機械工程學系,台南。
[15] M. H. Hsu and W. R. Chen, 1999, “On the Design of Speed Function for Improving Torque Characteristics of Cam-follower Systems,” Proceedings of the Tenth World Congress On the Theory of Machines and Mechanisms, Oulu, 1, pp. 272-277.
[16] Van de Straete and H. J. De Schutter, 1996, “Hybrid Cam Mechanisms,” IEEE/ASME Transactions on Mechatronics, 1(4), pp. 284-289.
[17] Y. A. Yao, C. Zhang and H. S. Yan, 2000.04, “Motion control of cam mechanisms,” Mechanism and Machine Theory, Vol.35, No.4, pp.593-607.
[18] Y. A. Yao, H. S. Yan, C. Zhang and H. J. Zou, 2000.10, “Integrated design of cam mechanisms and servo-control systems,” Science in China (Series E), Vol.43, No.5, pp.511-518.
[19] H. S. Yan, Y. A. Yao and H. J. Zou, 2001, “Polydyne servo-cam design,” Journal of the Chinese Society of Mechanical Engineers, Taipei, Vol.22, No.2, pp.90-104.
[20] Y. A. Yao, H. S. Yan and C. Zhang, 2003.09, “A variable-speed method for reducing residual vibrations in elastic cam-follower systems,” ASME Transactions, Journal of Dynamic Systems, Measurement, and Control, Vol.125, No.3, pp.480-482.
[21] Y. A. Yao and H. S. Yan, 2003, “A novel concept for minimizing speed fluctuations in motor driven mechanisms,” Journal of the Chinese Society of Mechanical Engineers, Taipei, Vol.24, No.4, pp.565-570.
[22] Y. A. Yao, J. Z. Cha and H. S. Yan, 2004.10, “Co-design of mechanism and control,” Chinese Journal of Mechanical Engineering, Beijing, Vol.40, No.10, pp.1-5.
[23] H. S. Yan and W. J. Tsai, 2008.02, “A variable-speech approach for preventing cam-follower separation,” Journal of Mechanical Design, Systems, and Manufacturing, JSME International Journal, Vol.2, No.1, pp.12-23.
[24] H. S. Yan and W. J. Tsai, 2008, “Motion adaptation of cam-follower systems by variable input speeds,” Proceedings of the Institute of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science., Vol.222(C3), pp.459-472.
[25] H. S. Yan and J. C. Yeh, 2010, “Integrated kinematic and dynamic design for variable-speech plate cam mechanisms,” Proceedings of the Institute of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science, Vol.222(C3), pp.459-472.
[26] R. L. Kaplan and S. S. Rao, 1987, "Goal Programming Approach for the Balancing of Variable Input Speed Mechanisms," Proceedings of the 1987ASME Design Technology Conferences, Publication DE, Vol. 10-1, pp.163-172.
[27] I. S. Kochev, 1990, "Full Shaking Moment Balancing of Planar Linkagesby a Prescribed Input Speed Fluctuations," Mechanism and MachineTheory, Vol. 25, No. 4, pp. 459-466.
[28] H. S. Yan and R. C. Soong, “Kinematic and dynamic design of four-bar linkages by links counterweighing with variable input speed,” Mechanism and Machine Theory, Vol. 36, No. 4, pp. 1051-1071, 2001.
[29] H. S. Yan and R. C. Soong, 2002, “Kinematic and dynamic design of four-bar linkages by mass retribution with variable input speed,” Journal of the Chinese Society of Mechanical Engineers, Taipei, Vol. 23, No. 4, pp.321-332.
[30] H. S. Yan and R. C. Soong, 2002, “Kinematic and dynamic design of four-bar linkages with variable input speed and external applied loads,” Transactions of the Canadian Society for Mechanical Engineering, Vol. 26, No. 3, pp. 281-310.
[31] H. S. Yan and R. C. Soong, “An integrated design approach of four-bar linkages with variable input speed,” JSME International Journal, Mechanical Systems, Machine Elements and Manufacturing, Series C, Vol. 47, No. 1, pp. 350-362.
[32] Y. A. Yao, H. S. Yan, H. J. Zou, 2002, “Output motion control of variable-input- speed linkage mechanisms,” Transactions of the Canadian Society for Mechanical Engineering, Vol.26, No.1, pp.1-14.
[33] Y. A. Yao, H. S. Yan and H. L. Zou, 2005, "Dynamic Design of VariableSpeed Planar Linkages," Chinese Journal of Mechanical Engineering(Beijing), Vol. 18, No. 1, pp. 51-54.
[34] 陳誌峰,邱顯堂,2005,"用傅立葉級數決定輸入轉速之四連桿機構最佳平衡設計",中華民國機構與機器原理學會第八屆全國機構與機器設計學術研討會,台北,pp. 498-505。
[35] H. S. Yan and G. J. Yan, 2009, “Integrated control and mechanism design for variable input-speed servo four-bar linkages,” Journal of Mechatronics, Vol.19, pp.274-285.
[36] H. S. Yan and W. R. Chen, 2000.04, “On the output motion characteristics of variable input speed servo-controlled slider-crank mechanisms,” Mechanism and Machine Theory, Vol.35, No.4, pp.541-561.
[37] H. S. Yan and W. R. Chen, 2000.04, “A variable input speed approach for improving the output motion characteristics of Watt-type pressed,” International Journal of Machine Tools & Manufacture, Vol.40, No.5, pp.675-690.
[38] H. S. Yan and W. R. Chen, 2002.06, “Optimized kinematic properties for Stevenson-type presses with variable input speed approach,” ASME Transactions, Journal of Mechanical Design, Vol.124, No.2, pp.350-354.
[39] Ali. Kirecci and L. C. Dulger, 2000, “A study on a hybrid actuator,” Mechanism and Machine Theory, Vol. 35, No. 4, pp. 1141-1149.
[40] J. Y. Liu, M. H. Hsu and F. C. Chen, 2001, “On the Design of Rotating Speed Functions to Improve the Acceleration Peak Value of Ball-Screw Transmission Mechanism, ” Mechanism and Machine Theory, Vol. 39, No. 4, pp. 1035-1049.
[41] 林志明,2003 年 5 月,應用變轉速滾珠螺桿機構於伺服沖床之研究,碩士論文,國立成功大學機械工程學系,台南。
[42] 陳仁智,2004 年 5 月,具負載變轉速滾珠螺桿機構於伺服沖床之研究,碩士論文,國立成功大學機械工程學系,台南。
[43] 郭明聖,2011年6月,具傅立葉級數輸入變轉速滾珠螺桿於伺服沖床之研究,碩士論文,國立成功大學機械工程學系,台南。
[44] 徐翊清,2013年6月,一種變轉速複合螺桿機構之運動與動力特性設計,碩士論文,國立成功大學機械工程學系,台南。
[45] 楊虔豪,2014年6月,一種整合曲柄滑塊與螺桿變轉速機構之運動與動力特性設計,碩士論文,國立成功大學機械工程學系,台南。
[46] J. J. Lee and C. C. Cho, 2002, “Improving Kinematic and Structural Performance of Geneva Mechanisms Using the Optimal Control Method,” Proceedings of the Institution of Mechanical engnineers, Part C: Journal of Mechanical Engineering Science, 216, pp. 761-774.
[47] T. N. Katou, 2005, “Applying the Collaboration of Motor control and Cam Mechanisms Techniques to Hybrid Motion Control in Factory Automation (in Japanese),” Mechanical Design, 49(12), pp. 42-46.
[48] TDK, 2002, FA systems: Avisert component insertion systems (AC-7), TDK website catalog, http://www.component.tdk.com/fa/inserter.html.
[49] A. S. Hall Jr., 1981, Notes on Mechanism Analysis, BALT Publishers, Lafayette, Indiana.
[50] R. L. Norton, 2013, Kinematics and Dynamics of Machinery, McGraw-Hill, New York.
[51] R. S. Berkof and G. G. Lowen, 1969, “A New Method for Completely Force Balancing Simple Linkages.,” Trans ASME J. of Eng. for Industry, pp. 21-26.
[52] P. Bezier, 1986, The Mathematical Basis of the UNISURF CAD System, Butterworths, London.
[53] 無錫市陽光製線廠,1996年,GA74型劍桿頭,http://www.jsunny.com/
show.htm.
[54] 顏鴻森、李榮顯、黃文敏、蔡明俊、邱顯堂、陳家豪、陳元方、陳朝光、王俊志、蘇演良、林昌進,1995年10月,劍桅式無梭織布機變導程螺桿傳動機構之電腦整合設計與製造 No.5載具技術報告,國科會專題研究計畫(NSC 83-0422-E-006),國立成功大學機械工程學系,台南。
[55] 黃文敏,1995年9月,劍桅式無梭織布機變導程螺桿傳動機構之電腦整合設計與製造 總技術報告 A.構想設計,國科會專題研究計畫(NSC 83-0422-E-006),國立成功大學機械工程學系,台南。
[56] 蔡明俊,1995年9月,劍桅式無梭織布機變導程螺桿傳動機構之電腦整合設計與製造 總技術報告 B.運動分析,國科會專題研究計畫(NSC 83-0422-E-006),國立成功大學機械工程學系,台南。
[57] 邱顯堂,1995年9月,劍桅式無梭織布機變導程螺桿傳動機構之電腦整合設計與製造 總技術報告 C.動力分析,國科會專題研究計畫(NSC 83-0422-E-006),國立成功大學機械工程學系,台南。
[58] 顏鴻森,1995年9月,劍桅式無梭織布機變導程螺桿傳動機構之電腦整合設計與製造 總技術報告 F.幾何設計,國科會專題研究計畫(NSC 83-0422-E-006),國立成功大學機械工程學系,台南。
[59] HIWIN, 2015, Ball-screw technical information, p. 72.
[60] N. Minorsky, 1922, “Directional stability of automatically steered bodies,” Journal of American Society of Naval Engineers, Vol. 42, No. 2, pp. 280-309.
[61] A. Callender, D. R. Hartree and A. Porter, 1936, “Time lag in a control system,” Phil. Trans. Roy. Soc. London, Vol. 235, No. 756, pp. 415-444.
[62] J. G. Ziegler and Nichols, 1942, “Optimal settings for automatic controllers,” Transactions of the ASME, Vol. 64, pp. 759-768.
[63] National Instruments, 2010, Getting started with NI-Motion for NI 7344 Motion Controllers.
[64] National Instruments, 2001, Motion Control 7344/7334 Hardware User Manual.
[65] National Instruments, 2011, National Instruments Universal Motion Interface (UMI)-7774/7772 User Manual and Specifications.
[66] Mitsubishi Motors, 2016, Mitsubishi-Servo-Driver_MR-J4-A-instruction-manual.