| 研究生: |
廖俞凱 Liao, Yu-Kai |
|---|---|
| 論文名稱: |
Ibandronate Sodium (含氮雙磷酸鹽)對於噬骨前驅細胞上中型鈣離子活化型鉀離子通道的抑制作用 Ibandronate Sodium, a Nitrogen-Containing Bisphosphonate, Inhibits Intermediate-Conductance Calcium-Activated Potassium Channels in RAW264.7 Cells |
| 指導教授: |
吳勝男
Wu, Sheng-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 噬骨前驅細胞 、雙磷酸鹽類 、中型電導鈣離子活化型鉀離子通道 |
| 外文關鍵詞: | osteoclast precursor cells, ibandronate, intermediate-conductance Ca2+-activated K+ channel |
| 相關次數: | 點閱:145 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
骨質疏鬆症(Osteoporosis)會造成骨頭的脆弱,使患者容易發生骨折。 在正常的狀態下骨骼會不斷進行重塑(remodeling),並且維持動態平衡,為了維持骨骼的動態平衡,成骨細胞及噬骨細胞的調控作用扮演很重要的角色,如果噬骨細胞的活性太強而失去平衡、噬骨作用(resorption)的速度超過成骨作用的速度很有可能會導致骨質疏鬆。 Ibandronate sodium (Iban)是一種含氮雙磷酸鹽的藥物,目前已經證實Iban會去抑制噬骨細胞的噬骨作用,但是這種藥物對於發生噬骨作用的噬骨細胞上離子通道的作用所知甚少。 因此在本篇研究中我們利用Iban及其他相關化合物來探討藥物和噬骨前驅細胞上離子通道的交互作用。 我們利用細胞膜箝制(patch-clamp)的技術來評估噬骨前驅細胞(RAW 264.7)的電生理特性。 研究結果顯示在此細胞中有中型電導鈣離子活化型鉀離子通道(IKCa channels)的存在,並且根據先前的研究報告指出此離子通道對於許多疾病具有治療的潛力。 我們同時在噬骨前驅細胞上進行聚合酶連鎖反應中也有得到此離子通道的基因片段,並且透過細胞膜箝技術中之完整細胞模式(whole-cell model)的結果得知,Iban會去抑制鉀離子通道電流並且呈現濃度依賴性的關係,並且透過公式換算得到藥物發揮一半抑制效力的濃度(IC50)為28.9 M。 此鉀離子電流會受到IKCa通道的專一抑制劑TRAM-34所抑制,這種抑制現象會隨著加入DC-EBI0(已知IKCa通道刺激劑)而被逆轉。 其次,我們將含有Iban (10 M)的電解溶液注入細胞測量,鉀離子電流仍然會受到抑制,而再加入inomycin (10 M)之後,這種抑制現象就會被逆轉。 另外,噬骨前驅細胞經過雌激素24小時的處理之後,我們發現Iban 對於噬骨細胞的抑制鉀離子電流作用仍然存在。此外,Iban 也不會對向內糾正鉀離子電流(K(IR))有任何的影響。 在細胞連接片模式(cell-attached model)中,我們發現Iban 會去抑制IKCa通道的活性但是並不會改變此通道的電導。 此外,此離子通道的活性是會受到KN-93 (calmodulin 的抑制劑)所抑制,隨後再加入Iban 並不會更進一步的減少此通道的開啟機率。 再由電流箝制(current-clamp recording)的紀錄指出Iban (10 M) 會造成噬骨前驅細胞的膜電位產生去極化,然後再加入DC-EBIO (10 M)之後去極化的現象就會被逆轉回來。 我們參考其他文獻,進行細胞遷移(cell migration)的實驗,結果顯示由細胞內毒素(lipopolysaccharide)所產生的細胞遷徙現象會被Iban抑制,並且此抑制現象會呈現著濃度依賴性的關係。 最後,我們利用Chembio3D 這套軟體分析Iban和鈣離子結合時化學能的變化,結果暗示鈣離子和Iban有強烈的結合能力。 總結本篇的實驗,透過Iban對於噬骨前驅細胞的抑制作用可以對活體中噬骨細胞的功能活性將會有更進一步的了解。
Osteoporosis is a bone disease in which the bone becomes fragile and increases fracture risk. Bone remodeling plays an important role in bone homeostasis and is regulated by activity of osteoblasts and osteoclasts. Hyperactivity of osteoclasts may cause osteoporosis because the rate of bone resorption exceeds bone formation. Bisphosphonate drug Ibandronate (Iban, Boniva®) has shown to reduce skeletal complications through inhibiting osteoclast-mediated bone resorption. The intermediate-conductance Ca2+-activated K+ (IKCa) channels (also known as KCa3.1, SK4, IKCa1, or KCNN4) are encoded by the KCNN4 gene. These channels have single-channel conductance of 20-60 pS and their modulators represent a potentially therapeutic approach to many diseases including osteoporosis. However, how Iban interacts with these channels in osteoclasts largely remains unclear. In this study, we attempt to investigate whether Iban has any effect on ion currents in osteoclast precursor RAW 264.7 cells. In the RT-PCR experiment, the mRNA expression of KCNN4 could be detected in these cells. The result showed that the amplitude of whole-cell K+ currents (IK) was suppressed by Iban in a concentration-dependence manner with IC50 value of 28.9μM. Under 17β-estradiol treatment in RAW cells for 12 hours, Iban-induced inhibition of IK remained effective. Moreover, this compound alone did not affect inwardly rectifying K+ current in RAW cells. IK amplitude was inhibited by TRAM-34, a specific IKCa blocker, and Iban. Iban-mediated inhibition of IK was reversed by DC-EBIO, an opener of (IKCa) channels. Inhibitory effects on IK caused by Iban (10 μM) in the pipette was reversed by bath addition of ionomycin (10 μM). In cell-attached recordings, Iban added to bath did not affect single-channel conductance of IKCa channels. Instead, it did significantly decrease the channel activity. IKCa-channel activity was also suppressed by KN-93, a calmodulin inhibitor. Subsequent addition of Iban did after calmodulin inhibitor did not decrease the channel open probability further. In current-clamp recordings, Iban caused membrane depolarization of RAW cells, and DC-EBIO reversed the Iban-induced depolarization. In cell migration assay, Iban suppressed lipopolysaccharide-induced migration in a concentration-dependent manner. With the aid of ChemBiol3D analysis, as Ca2+ ions are exposed to Iban, the degree of freedom becomes strongly restricted. Our results suggest that the inhibition of IKCa channels caused by Iban could be an important mechanism underlying the activity of osteoclasts occurring in vivo.
Anderson ME, Braun AP, Wu Y, Lu T, Wu Y, Schulman H, Sung RJ (1998) KN-93, an inhibitor of multifunctional Ca++/calmodulin-dependent protein kinase, decreases early afterdepolarization in rabbit heart. J Pharmacol Exp Ther 287:996-1006.
Begenisich T, Nakamoto T, Ovitt CE, Nehrke K, Brugnara C, Alper SL, Melvin JE (2004) Physiological roles of the intermediate conductance, Ca2+-activated potassium channel Kcnn4. J Biol Chem 279:47681-47687.
Clark RB, Sanchez-Chapula J, Salinas-Stefanon E, Duff HJ, Giles WR (1995) Quinidine-induced open channel block of K+ current in rat ventricle. Br J Pharmacol 115:335-343.
Diaz P, Wood AM, Sibley CP, Greenwood SL (2014) Intermediate conductance Ca2+-activated K+ channels modulate human placental trophoblast syncytialization. PloS One 9:e90961.
Dunn PM (1998) The action of blocking agents applied to the inner face of Ca2+-activated K+ channels from human erythrocytes. J Membr Biol 165:133-143.
Ebetino FH, Hogan AL, Sun S, Tsoumpra MK, Duan X, Triffitt JT, Kwaasi AA, Dunford JE, Barnett BL, Oppermann U, Lundy MW, Boyde A, Kashemirov BA, McKenna CE, Russell RGG (2011) The relationship between the chemistry and biological activity of the bisphosphonates. Bone 49:20-33.
Espinosa L, Paret L, Ojeda C, Tourneur Y, Delmas PD, Chenu C (2002) Osteoclast spreading kinetics are correlated with an oscillatory activation of a calcium-dependent potassium current. J Cell Sci 115:3837-3848.
Fisher JE, Rosenberg E, Santora AC, Reszka AA (2013) In vitro and in vivo responses to high and low doses of nitrogen-containing bisphosphonates suggest engagement of different mechanisms for inhibition of osteoclastic bone resorption. Calcif Tissue Int 92:531-538.
Gallagher JC, Tella SH (2013) Controversies in osteoporosis management: antiresorptive therapy for preventing bone loss: when to use one or two antiresorptive agents Clin Obstet Gynecol 56:749-756.
Grössinger EM, Weiss L, Zierler S, Rebhandl S, Krenn PW, Hinterseer E, Schmölzer J, Asslaber D, Hainzl S, Neureiter D, Egle A, Piñón-Hofbauer J, Hartmann TN, Greil R, Kerschbaum HH (2014) Targeting proliferation of chronic lymphocytic leukemia (CLL) cells through KCa3.1 blockade. Leukemia 28:954-958.
Hadjidakis, D. J. and Androulakis, II (2006). Bone remodeling. Ann N Y Acad Sci 1092: 385-396.
He C, Fam X, Li Y (2013) Toward ubiquitous healthcare services with a novel efficient cloud platform. IEEE Trans Biomed Eng 60:230-234.
Islam S, Hassan F, Tumurkhuu G, Dagvadorj J, Koide N, Naiki Y, Mori I, Yoshida T, Yokochi T (2007) Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells. Biochem Biophys Res Commun 360:346-351.
Jensen BS, Strøbæk D, Olesen SP, Christophersen P (2001) The Ca2+-activated K+ channel of intermediate conductance: a molecular target for novel treatments Curr Drug Targets 2:401-422.
Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporosis Int. 17:1726-33
Jones H, Birchard Z (2014) Inhibition of KCa3.1 decreases differentiated osteoclast function in RAW264 cells. FASEB J 28(Suppl):893-21.
Journè F, Kheddoumi N, Chaboteaux C, Duvillier H, Laurent G, Body J-J (2008) Extracellular calcium increases bisphosphonate-induced growth inhibition of breast cancer cells. Breast Cancer Res 10:R4.
Kaushal V, Koeberle PD, Wang Y, Schlichter LC (2007) The Ca2+-activated K+ channel KCNN4/KCa3.1 contributes to microglia activation and nitric oxide-dependent degeneration. J Neurosci 27:234-244.
Kemmer G, Keller S (2010) Nonlinear least-squares data fitting in Excel spreadsheets. Nat Protocol 5:267-281.
Komarova SV, Dixon S, Sims SM (2001) Osteoclast ion channels potential targets for antiresorptive drugs. Curr Pharm Des 7:637-654.
Lallet-Daher H, Roudbaraki M, Bavencoffe A, Mariot P, Gackiere F, Bidaux G, Urbain R, Gosset P, Delcourt P, Fleurisse L, Slomianny C, Dewailly E, Mauroy B, Bonnal JL, Skryma R, Prevarskaya N (2009) Intermediate-conductance Ca2+-activated K+ channels (IKCa1) regulate human prostate cancer cell proliferation through a close control of calcium entry, Oncogene 28:1792-1806.
Liu SI, Chi CW, Lui WY, Mok KT, Wu CW, Wu SN (1998) Correlation of hepatocyte growth factor-induced proliferation and calcium-activated potassium current in human gastric cancer cell. Biochim Biophys Acta 1368:256-266.
Marathe DD, Marathe A, Mager DE (2011) Integrated model for denosumab and ibandronate pharmacodynamics in postmenopausal women. Biopharm Drug Duspos 32:471-481.
McFerrin MB, Turner KL, Cuddapah VA, Sontheimer H (2012) Differential role of IK and BK potassium channels as mediators of intrinsic and extrinsic apoptotic cell death. Am J Physiol Cell Physiol 303:C1070-C1078.
Morales P, Garneau L, Klein H, Lavoie MF, Parent L, Sauvé R (2013) Contribution of the KCa3.1 channel-calmodulin interactions to the regulation of the KCa3.1 gating process. J Gen Physiol 142:37-60.
Mosekilde L, Vestergaard P, Rejnmark L (2013) The pathogenesis, treatment and prevention of osteoporosis in men. Drugs 73:15-29.
Ohya S, Niwa S, Kojima Y, Sasaki S, Sakuragi M, Kohri K, Imaizumi Y (2011) Intermediate-conductance Ca2+-activated K+ channel, KCa3. 1, as a novel therapeutic target for benign prostatic hyperplasia. J Pharmacol Exp Ther 338:528-536.
Pazianas M (2010) Osteonecrosis of the jaw and the role of macrophages. J Natl Cancer Inst 103:232-240.
Prokopenko V, Kovalishyn V, Shevchuk M, Kopernyk I, Metelytsia L, Romanenko V, Mogilevich S, Kukhar V (2014) Design and synthesis of new potent inhibitors of farnesyl pyrophosphate synthase. Curr Drug Discov Technol 11:133-144.
Robling, A.G., Castillo, A.B., Turner, C.H., (2006). Biomechanical and molecular regulation of bone remodeling. Annu. Rev. Biomed. Eng 8, 455–498.
Shao W, Orlando RC, Awayda MS 2005 Bisphosphonates stimulate an endogenous nonselective cation channel in Xenopus oocytes: potential mechanism of action. Am J Physiol Cell Physiol 289:C248-C256.
Shen AY, Tsai JH, Teng HC, Huang MH, Wu SN (2007) Inhibition of intermediate-conductance Ca2+-activated K+ channel and cytoprotective properties of 4-piperidinomethyl-2-isopropyl-5-methylphenol. J Pharm Pharmacol 59:679-685.
Shin WJ, Kim YK, Song JG, Kim SH, Choi SS, Song JH, Hwang GS (2011) Alterations in QT interval in patients undergoing living donor liver transplantation. Transplant Proc 43:170-173.
So EC, Wu KC, Liang CH, Chen JY, Wu SN (2011) Evidence for activation of BKCa channels by a known inhibitor of focal adhesion kinase, PF573228. Life Sci 89:691-701.
Suzuki S, Hayakawa T, Kamasaki N, Okada H, Yamamoto H (2008) Conformational analysis of bisphosphonate/calcium complex. Int J Oral Med Sci 7:45-49.
Toyama K, Wulff H, Chandy KG, Azam P, Raman G, Saito T, Fujiwara Y, Mattson DL, Das S, Melvin JE, Pratt PF, Hatoum OA, Gutterman DD, Harder DR, Miura H (2008) The intermediate-conductance calcium-activated potassium channel KCa3.1 contributes to atherogenesis in mice and humans. J Clin Invest 118:3025-3037.
Tsai KL, Chang HF, Wu SN (2013) The inhibition of inwardly rectifying K channels by memantine in macrophages and microglial cells. Cell Physiol Biochem 31:938-951.
Valverde P, Kawai T, Taubman MA (2005) Potassium channel-blockers as therapeutic agents to interfere with bone resorption of periodontal disease. J Dent Res 84:488-489.
Wang CL, Tsai ML, Wu SN (2012) Evidence for mitoxantrone-induced block of inwardly rectifying K+ channels expressed in the osteoclast precursor RAW 264.7 cells differentiated with lipopolysaccharide. Cell Physiol Biochem 30:687-701.
Wu SN, Wu PY, Tsai ML (2011) Characterization of TRPM8-like channels activated by the cooling agent icilin in the macrophage cell line RAW 264.7. J Membr Biol 241:11-20.
Wu SN, Yu HS, Jan CR, Li HF, Yu CL (1998) Inhibitory effects of berberine on voltage- and calcium-activated potassium currents in human myeloma cells. Life Sci 62:2283-2294.
Wulff H, Miller MJ, Hänsel W, Grissmer S, Cahalan MD, Chandy KG (2000) Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci 97:8151-8156.
Wulff H, Kolski-Andreaco A, Sankaranarayanan A, Sabatier JM, Shakkottai V (2007) Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications. Curr Med Chem 14:1437-1457.
Yang DM, Chi CW, Chang HM, Wu LH, Lee TK, Lin JD, Chen ST, Lee CH (2004) Effects of clodronate on cancer growth and Ca2+ signaling of human thyroid carcinoma cell lines. Anticancer Res 24(3a):1617-1623.
You L, Temiyasathit S, Lee P, Kim CH, Tummala P, Yao W, Kingery W, Malone AM, Kwon RY, Jacobs CR (2008) Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading. Bones 42(1):172-179
Zhang W, Yang DL, Wang YX, Wang HW, Zhen ZJ, Zhang YZ, Shen Y (2013) In vitro osteoclast-suppressing effect of sodium ibandronate. Chin Med J 126:751-755.