簡易檢索 / 詳目顯示

研究生: 蕭聖蒼
Hsiao, Sheng-Tsang
論文名稱: 採用氧化矽鋯介電層之氮氧化鋅通道層薄膜電晶體開發研究
The development of high-performance ZnON thin film transistors with Zr0.85Si0.15O dielectric
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 96
中文關鍵詞: 共濺鍍氧化矽鋯氮氧化鋅薄膜電晶體偏壓應力照光穩定度
外文關鍵詞: ZnON, Zr0.85Si0.15Key Words: ZnON, Zr0.85Si0.15O, Co-sputtering, Thin film transistor, P(N)GBS, NBISO, Co-sputtering, Thin film transistor, P(N)GBS , NBIS
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在進行一種採用氧化矽鋯閘極介電層、具高載子移動率氮氧化鋅(ZnON)之通道層薄膜電晶體之開發,期藉由高載子移動率與高閘極控制力,大幅度提升元件電特性與可靠度。
    本研究分為兩大部分,第一部分為接續本實驗室先前研製氧化矽鋯閘極介電層於氮氧化鋅通道層之應用,藉由摻入適量之矽原子於二氧化鋯介電層中,提升介電層品質並降低其與氮氧化鋅通道層之界面缺陷密度,並將進一步分析氮氧化鋅薄膜電晶體之電特性與可靠度之影響。第二部分為利用濺鍍沉積鋅薄膜過程適當控制氮氣與氧氣分壓開發氮氧化鋅薄膜,藉由調變各項濺鍍沉積參數(包括濺鍍功率、製程壓力與N2/Ar/O2氣體流量比)以改變氮氧化鋅通道層之組成成份與厚度。除將進行薄膜分析、元件電特性與可靠度之研究外,亦將探討ZnON通道層的熱退火製程對材料品質、元件電特性與可靠度之影響。
    於本論文第一部分,首先比較二氧化矽與氧化矽鋯閘極介電層應用於氮氧化鋅薄膜電晶體情況下元件電特性與可靠度之差異。實驗結果顯示,相較於二氧化矽閘極介電層,採用摻入適量矽原子之二氧化鋯閘極介電層,可減少界面缺陷進而提高介面品質、具較佳之閘極控制力,且經600 oC退火後仍呈現非晶型態,於相同等效氧化層厚度下具較低漏電流。
    於本論文第二部分,應用於TFTs通道層的ZnON薄膜,ZnON的形成主要是藉由適當製程引入高含量N原子取代ZnO的O原子,根據實驗結果證實,由於N3-比O2-具有較大尺寸及較高的p軌域能量,使a-ZnON能隙寬度降低,使大部分氧空缺移除,有效改善界面缺陷使閘極控制力大幅提升,降低載子移動受界面缺陷捕獲之機率,其漏電流降低而提升氮氧化鋅通道層之薄膜品質。另一方面,相較於一般非晶型氧化物半導體(AOS),ZnON僅含單一金屬,僅需藉由薄膜內適C軸結晶氮化鋅(c-Zn3N2)及氧化鋅(ZnO)奈米晶粒的適當含量以降低缺陷濃度(載子濃度下降),再利用其c-Zn3N2內電子具較小有效質量(m_e≈ 0.19m_0)之特點,可展現出較高的載子移動率。此外,進一步藉由熱退火處理以修補內部氮、氧空缺及活化氮氧化鋅薄膜之品質,而達成其元件特性與可靠度之優化。
    實驗結果顯示,通入適當氣體流量之ZnON通道層內適Zn3N2及ZnO奈米晶粒,可改善薄膜的品質亦減少介電層/通道層界面之缺陷密度,亦有助於降低氧空缺之含量。本研究發現經300 oC氮氣環境下退火之N(19%)-ZnON TFT,展現最佳元件之特性與可靠度,其載子移動率為35.1 cm2/V∙s、次臨界擺幅為97 mV/dec、元件電流開關比為8.82×107、臨界電壓為0.35 V與界面缺陷密度為1.25×1012 cm-2eV-1;於正負偏壓應力測試實驗部分,臨界電壓偏移量分別為0.18 V和-0.15 V;於照光負偏壓應力部分,臨界電壓偏移為-0.18 V;於熱穩定度部分,其臨界電壓偏移量為-0.15 V。
    本實驗成功以共濺鍍技術製備矽摻雜二氧化鋯介電層及氮氧化鋅鋅通道層之薄膜電晶體,具較高載子移動率,且成功改善其漏電流、界面品質、閘極控制能力、元件特性與可靠度,此材料系統具備高驅動及低功耗等優良特性,將有助於未來顯示技術之應用以及電子產品性能之提升。

    ZnON TFTs with high-κ material as gate dielectrics, which both the channel layer and dielectric layer use a RF sputtering process, were fabricated and investigated in this work. To incorporate Si in high-κ dielectric layer can suppresses oxygen vacancies and immunity of crystal-structured at post-deposition annealing (600°C) to decrease surface roughness. In addition, to incorporate N in ZnO channel could be reduce the channel defect density and has excellent electrical properties and stability. In this work, we used high mobility and high carrier concentration of ZnON to apply in High-k dielectric layer to improve the operating voltage and then enhance the gate control ability. Experimental results reveal that Zr0.85Si0.15O gate dielectric combine with N(19%)-ZnON channel layer by post deposition annealing (PDA) in N2 at 300ºC exhibit the best device performances with the subthreshold swing of 97 mV/dec, field effect mobility of 35.1 cm2/V∙s, on/off current ratio of 8.82×107, the threshold voltage shift after 1000 sec positive/negative gate bias stress of 0.18 V/-0.15 V, and the threshold voltage shift after 1000 sec negative bias illumination stress of -0.18 V.

    摘要 I abstract IV 致謝 XI 目錄 XIII 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1-1 平面顯示器發展概況 1 1-2 新穎氮氧化鋅材料及其於薄膜電晶體之應用 3 1-3 薄膜電晶體高介電常數材料之選用 8 1-4 研究動機 13 第二章 薄膜電晶體之理論基礎 17 2-1 薄膜電晶體操作原理與全空乏理論 17 2-1-1 ZnON通道完全空乏(Fully-depleted)理論 17 2-1-2 ZnON薄膜電晶體操作原理 19 2-2 薄膜電晶體基本參數萃取 22 2-3 介電層之缺陷及其效應 25 2-4 元件可靠度之理論與量測 27 第三章 薄膜製備及元件製備流程 34 3-1 氮氧化鋅下閘極薄膜電晶體之製備流程圖 34 3-2 氧化矽鋯介電層之製備方法與共濺鍍技術簡介 35 3-2-1 共濺鍍系統之簡介 .35 3-2-2 氧化矽鋯介電層之製備方法 37 3-3 氮氧化鋅通道層之製備方法 38 3-4 緩衝層之製備方法 40 3-5 源/汲極金屬電極之製備方法與電子真空蒸鍍系統簡介 41 3-5-1 電子真空蒸鍍系統之簡介 41 3-5-2 源/汲極金屬電極之製備方法 42 3-6 鈍化層之製備方法 43 第四章 氧化矽鋯介電層與氮氧化鋅通道層薄膜材料特性分析 44 4-1 氧化矽鋯介電層材料分析 44 4-1-1 XPS薄膜分析 44 4-1-2 XRD薄膜分析 45 4-1-3 C-V電容特性量測 47 4-1-4 J-V漏電分析 48 4-2 氮氧化鋅通道層材料分析 49 4-2-1 XPS薄膜分析 49 4-2-2 XRD薄膜分析 53 4-2-3 穿透率分析 54 4-2-4 氮氧化鋅霍爾量測 56 第五章 元件實驗量測特性分析與討論 59 5-1 氧化矽鋯閘極介電層之元件特性量測 59 5-2 氮氧化鋅通道層之元件特性量測 61 5-2-1 未熱退火通道層ZnON之元件特性量測 62 5-2-2 經熱退火通道層ZnON之元件特性量測 65 5-3 ZnON通道層於Zr0.85Si0.15O介電層之元件可靠度分析 67 5-3-1 ZnON通道層TFT於室溫下長時間偏壓應力 68 5-3-2 經熱退火之ZnON通道層TFT之負偏壓照光穩定度 73 5-3-3 ZnON通道層TFT之熱穩定度分析 76 第六章 結論與未來研究建議 81 6-1 結論 81 6-2 未來研究之建議 85 參考資料 87

    [1] B.-D. Choi, I.-S. Park, J.-S. Kim, S.-J. Lee, and B. S. Bae, “Image quality enhancement in AMOLED microdisplay for mobile projectors,” IEEE Transactions on Consumer Electronics, vol. 57, no. 2, pp. 313-319, 2011.
    [2] G. H. Heilmeier, L. A. Zanoni, and L. A. Barton, “Dynamic scattering: A new electrooptic effect in certain classes of nematic liquid crystals,” Proceedings of the IEEE, vol. 56, no. 7, pp. 1162-1171, 1968.
    [3] T. P. Brody, J. A. Asars, and G. D. Dixon, “A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel,” IEEE Transactions on Electron Devices, vol. 20, no. 11, pp. 995-1001, 1973.
    [4] H. Kimura, T. Maeda, T. Tsunashima, T. Morita, H. Murata, S. Hirota, and H. Sato, “A 2.15 inch QCIF reflective color TFT-LCD with digital memory on glass (DMOG),” Proceedings of the SID, vol. 32, no. 1, pp. 268-270, 2001.
    [5] 光電科技工業協進會(Photonics Technology & Industry Devlopment Association, PIDA), http://www.pida.org.tw/.
    [6] N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito, “Control of preferred orientation for ZnOx films: control of self-texture,” Journal of Crystal Growth, vol. 130, no. 12, pp. 269-279, 1993.
    [7] G. Neumann, “On the Defect Structure of Zinc‐Doped Zinc Oxide,” physica status solidi (b), vol. 105, no. 2, pp. 605-612, 1981.
    [8] Y.Q. Fu, Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review, Sensors and Actuators B: Chemical, 2009.
    [9] Ü. Özgür et al., “A comprehensive review of ZnO materials and devices,” Journal of applied physics, vol. 98, no. 4, p. 11, 2005.
    [10] T. Hirao, M. Furuta, H. Furuta, T. Matsuda, T. Hiramatsu, H. Hokari, and M. Yoshida, in SID Dig. Vol. 18, 2006.
    [11] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, J. Appl. Phys. vol. 93, pp. 1624-1630, 2003.
    [12] Samanta, P. K. and Chaudhuri, P. R., “Substrate effect on morphology and photoluminescence from ZnO monopods and bipods”, Frontiers of Optoelectronics in China, vol. 4, no. 2, pp. 130-136, 2011.
    [13] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” Journal of Non-Crystalline Solids, vol. 352, no. 9, pp. 851-858, 2006.
    [14] J.-Y. Kwon, J. S. Jung, K. S. Son, K.-H. Lee, J. S. Park, T. S. Kim, J.-S. Park, R. Choi, J. K. Jeong, B. Koo, and S. Lee ,”Investigation of Light-Induced Bias Instability in Hf-In-Zn-O Thin Film Transistors: A Cation Combinatorial Approach” J. Electrochem. Soc. 158(4), H433–H437, 2011.
    [15] H.-S. Kim, J. S. Park, W.-J. Maeng, K. S. Son, T. S. Kim, M. R, J. Lee, J. C. Lee, G. Ko, S. Im, and S. Y. Lee,” The Influence of In/Zn Ratio on the Performance and Negative-Bias Instability of Hf–In–Zn–O Thin-Film Transistors Under Illumination,” IEEE Electron Device Lett. 32(9), 1251–1253, 2011.
    [16] S. Lany and A. Zunger,” Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors,” Phys. Rev. B. 72, 035215 , 2005.
    [17] K. Ghaffarzadeh, A. Nathan, J. Robertson, S. Kim, S. Jeon, C. Kim, U-I. Chung, and J.-H. Lee,” Instability in threshold voltage and subthreshold behavior in Hf–In–Zn–O thin film transistors induced by bias-and lightstress,” Appl. Phys. Lett. 97, 113504 , 2010.
    [18] M.D. H. Chowdhury, P. Migliorato, and J. Jang,” Light induced instabilities in amorphous indium–gallium–zinc–oxide thin-film transistors,” Appl. Phys. Lett. 97, 173506 , 2010.
    [19] H. S. Kim, S. H. Jeon, J. S. Park, T. S. Kim, K. S. Son, J.-B. Seon, S.-J. Seo, S.-J. Kim, E. Lee, J. G. Chung, H. Lee, S. Han, M. Ryu, S. Y. Lee, and K. Kim,” Anion control as a strategy to achieve high-mobility and high-stability oxide thin-film transistors,” Sci. Rep. 3, 1459 , 2013.
    [20] E. Lee , A. Benayad , T. Shi , H. Lee , D. S. Ko , T. S. Kim , K. S. Son , M. Ryu , S. Jeon and G. S. Park,” Nanocrystalline ZnON; High mobility and low band gap semiconductor material for high performance switch transistor and image sensor application,” SCIENTIFIC REPORTS. 10, 1038 , 2014.
    [21] Y.Ye, R. Lim, and J. M. White, “High mobility amorphous zinc oxynitride semiconductor material for thin film transistors,” J. Appl. Phys. 106, 074512 , 2009.
    [22] C.-I Kuan, H.-C. Lin, P.-W. Li, and T.-Y. Huang, “High-Performance Submicrometer ZnON Thin-Film Transistors With Record Field-Effect Mobility,” IEEE Electron Device Lett. 37(3), 303-305 , 2016.
    [23] H. M. Lee, H. J. Jeong, K. C. Ok, Y. S. Rim, and J. S. Park,” Near-Infrared Photoresponsivity of ZnON Thin-Film Transistor with Energy Band-Tunable Semiconductor,” ACS Appl. Mater. Interfaces, 10, 30541−30547, 2018.
    [24] H. Jeong, H. S. Jeong, D. H. Kim, C. Y. Jeong, and H. I. Kwon,” Effects of Post-Deposition Thermal Annealing Temperature on Electrical Properties of ZnON Thin-Film Transistors,” IEEE ELECTRON DEVICE LETTERS, VOL. 37, NO. 6, 2016.
    [25] K. C. Ok, H. J. Jeong, H. S. Kim, and J. S. Park,” Highly Stable ZnON Thin-Film Transistors With High Field-Effect Mobility Exceeding 50 cm2/Vs,” IEEE ELECTRON DEVICE LETTERS, VOL. 36, NO. 1, 2015.
    [26] T. Kim, M. J. Kim, J. Lee, and J. K. Jeong,” Boosting Carrier Mobility in Zinc Oxynitride Thin-Film Transistors via Tantalum Oxide Encapsulation,” ACS Appl. Mater. Interfaces, 11, 22501−22509, 2019.
    [27] D. H. Kim, H. S. Jeong, C. Y. Jeong, S. H. Song, and H. I. Kwon ,” Effects of oxygen flow rate on the electrical stability of zinc oxynitride thin-film transistors,” Japanese Journal of Applied Physics, 56, 020301 (2017).
    [28] C. Y. Jeong, H. J. Kim, D. H. Kim, H. S. Kim, E. S. Kim, T. S. Kim, J. S. Park, J. B. Seon, K. S. Son, S. Lee, S. H. Cho, Y. S. Park, D. H. Kim, and H. I. Kwon,” Investigation of Low-Frequency Noise Properties in High-Mobility ZnON Thin-Film Transistors,” IEEE ELECTRON DEVICE LETTERS, VOL. 37, NO. 6, 2016.
    [29] C.-I. Kuan, H.-C. Lin, P.-W. Li, and T.-Y. Huang, "Short-channel ZnON thin-film transistors with film profile engineering," in 2016 IEEE Silicon Nanoelectronics Workshop (SNW), 2016: IEEE, pp. 66-67.
    [30] X. Ding , J. Yang, C. Qin, X. Yang, T. Ding, and J. Zhang,” Nitrogen-Doped ZnO Film Fabricated Via Rapid Low-Temperature Atomic Layer Deposition for High-Performance ZnON Transistors,” IEEE Trans. Electron Devices. 65(8), 3283-3290 , 2018.
    [31] H. Gao, X. Zhang, Y. Zhao, and B. Yan, “Effect of process pressure and temperature on ZnON material properties in reactive sputtering,” AIP Advances, 7, 035311, 2017.
    [32] Gang He, “High-k Gate Dielectrics for CMOS Technology,” Weinheim, Germany, 2012, Ch.2.
    [33] S. Mohsenifar and M. H. Shahrokhabadi, “Gate Stack High-κ Materials for Si-Based MOSFETs Past, Present, and Futures,” Microelectronics and Solid-State Electronics, vol. 4(1), pp. 12-24, 2015.
    [34] B. Cheng, M. C. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. Stork, M. Zeitzoff, and J. C. Woo, “The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs,” IEEE Trans. Electron Devices, vol. 46, no. 7, pp. 1537-1544, 1999.
    [35] Guha, S., “High-k/metal gate science and technology,” Annu. Rev.Mater. Res., vol. 39, pp. 181, 2009.
    [36] J. Robertson and R.M. Wallace, “High- materials and metal gates for CMOS applications,” Materials Science and Engineering: R: Reports, vol. 88, pp. 1-41, 2015.
    [37] V. Mikhelashvili and G. Eisenstein, “Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation,” Applied physics letters, vol. 89, no. 6, pp. 3256-3269, 2001.
    [38] H.-L. Lu and D. W. Zhang, “Issues in High-k Gate Dielectrics and its Stack Interfaces,” High-k Gate Dielectrics for CMOS Technology, Weinheim, Germany, Wiley-VCH Verlag GmbH & Co. KGaA, pp. 31-59, 2012.
    [39] H. Chakraborty and D. Misra, “Characterization of High-K Gate Dielectrics using MOS Capacitors,” International Journal of Scientific and Research Publications, vol. 3, no. 12, pp. 1-5, 2013.
    [40] X. Zhao and D. Vanderbilt, “First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide,” Physical Review B, vol. 65, no. 23, Artical ID 233106, 2002.
    [41] B. Lee, L. Kang, R. Nieh, W. Qi, and J. Lee, “Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing,” Applied physics letters, vol. 76, no. 14, pp. 1926-1928, 2000.
    [42] H. Kim, P. McIntyre, C. Chui, K. Saraswat, and S. Stemmer, “Engineering chemically abrupt high-k metal oxide/silicon interfaces using an oxygen-gettering metal overlayer,” Journal of Applied Physics, vol. 96, no. 6, pp. 3467-3472, 2004.
    [43] S. Mohsenifar and M. H. Shahrokhabadi, “Gate Stack High-κ Materials for Si-Based MOSFETs Past, Present, and Futures”, Microelectronics and Solid State Electronics, vol.4, no. 1, pp. 12-24, 2015.
    [44] J. C. Park, I.-T. Cho, E.-S. Cho, D. H. Kim, C.-Y. Jeong, and H.-I. Kwon, “Comparative Study of ZrO2 and HfO2 as a High-κ Dielectric for Amorphous InGaZnO Thin Film Transistors,” Journal of Nanoelectronics and Optoelectronics, vol. 9, pp. 67-70, 2014.
    [45] X. Zhao and D. Vanderbilt, “First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide,” Physical Review B, vol. 65, no. 23, Artical ID 233106, 2002.
    [46] B. Cheng, M. C. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. Stork, M. Zeitzoff, and J. C. Woo, “The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs,” IEEE Trans. Electron Devices, vol. 46, no. 7, pp. 1537-1544, 1999.
    [47] H.L. Lu and D. W. Zhang, “Issues in High-k Gate Dielectrics and its Stack Interfaces,” High- Gate Dielectrics for CMOS Technology, Weinheim, Germany, Wiley-VCH Verlag GmbH & Co. KGaA, pp. 31-59, 2012.
    [48] H.-H. Tseng, The Progress and Challenges of Applying High-k/Metal-Gated Devices to Advanced CMOS Technologies, Solid State Circuits Technologies, J. W. Swart, Ed., InTech, 2010.
    [49] M.-T. Ho, Y. Wang, R. T. Brewer, L. S. Wielunski, Y. J. Chabal, N. Moumen, and M. Boleslawski, “In situ infrared spectroscopy of hafnium oxide growth on hydrogen-terminated silicon surfaces by atomic layer deposition,” Applied physics letters, vol. 87, no. 13, p. 133103, 2005.
    [50] X. Zhao and D. Vanderbilt, “First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide,” Physical Review B, vol. 65, no. 23, p. 233106, 2002.
    [51] P. Taechakumput, S. Taylor, O. Buiu, R. Potter, and P. Chalker, “Optical and electrical characterization of hafnium oxide deposited by liquid injection atomic layer deposition,” Microelectronics Reliability, vol. 47, no. 4-5, pp. 825-829, 2007.
    [52] J. Srivastava, S. Nahas, S. Bhowmick and A. Gaur, “Electronic structure and transport in amorphous metal oxide and amorphous metal oxy-nitride semiconductors,” Department of Materials Science and Engineering , 2019.
    [53] T. Kawamura et al., "1.5-V operating fully-depleted amorphous oxide thin film transistors achieved by 63-mV/dec subthreshold slope," in 2008 IEEE International Electron Devices Meeting, 2008: IEEE, pp. 1-4.
    [54] S. J. Yun, J. B. Koo, J. W. Lim, and S. H. Kim, “Pentacene-Thin Film Transistors with ZrO2 Gate Dielectric Layers Deposited by Plasma-Enhanced Atomic Layer Deposition,” Electrochemical and Solid-state Letters, vol. 10, no. 3, pp. H90-H93, 2007.
    [55] K. Terada, K. Nishiyama, and K. I. Hatanaka., “Comparison of MOSFET-threshold-voltage extraction methods,” Solid- State Electron, vol. 45, pp. 35-40, 2001.
    [56] D. K. Schroder, “Semiconductor Material and Device Characterization,” John Wiley & Sons. Inc., New Jersey, 2006.
    [57] A. C. Tickle, “Thin-Film Transistors-A New Approach to Microelectronics,” Wiley, New York, 1969.
    [58] David Vernon Morgan, Kamel D. and Al-Baidhawi, “Standardized Terminology for Oxide Charges Associated with Thermally Oxidized Silicon,” IEEE, vol. 27, pp. 606-608, 1980.
    [59] 許哲瑋,2012,氧化鉿∕砷化銦金氧半結構之製備及其介面與電性研究,碩士論文,國立中央大學電機工程學系。
    [60] B. E. Deal, “Standardized Terminology for Oxide Charges Associated with Thermally Oxidized Silicon,” IEEE Transactions on Electron Devices, vol. 27, no. 3, pp. 606-608, 1980.
    [61] Y. C. Cheng, “Electronic states at the silicon-silicon dioxide interface,” Progress in Surface Science, vol.8, pp. 181, 1977.
    [62] Y. C. Chiu, C. Y , Chang, S. S. Yen, C. C. Fan, H. H. Hsu, C. H. Cheng, P. C. Chen, P. W. Chen, G. L. Liou, M. H. Lee, C. Liu, and W. C. Chou, “On the variability of threshold voltage window in gate-injection versatile memories with Sub-60mV/dec subthreshold swing and 1012-cycling endurance,” IEEE International Reliability Physics Symposium (IRPS), 2016.
    [63] C. L. Fan, F. P. Tseng, B. J. Li, Y. Z. Lin, S. J. Wang, W. D. Lee, and B. R. Huang, “Improvement in reliability of amorphous indium–gallium–zinc oxide thin-film transistors with Teflon/SiO2 bilayer passivation under gate bias stress,” Japanese Journal of Applied Physics, vol. 55, no. 2S, pp. 02BC17, 2016.
    [64] A. Suresh, “Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors,” Appl. Phys. Lett., Vol. 92, pp. 033502, 2008
    [65] E. N. Cho, J. H. Kang, C. E. Kim, P. Moon, and I. Yun, “Analysis of Bias Stress Instability in Amorphous InGaZnO Thin-Film Transistors,” IEEE Transactions on Device and Materials Reliability, vol.11 no. 1, pp. 112-117, 2011.
    [66] C. van Berkel and M. J. Powell, “Resolution of amorphous silicon thin‐film transistor instability mechanisms using ambipolar transistors,” Appl. Phys. Lett., vol.51, Artical ID 1094 , 1987.
    [67] M. Ryu, T. S. Kim, K. S. Son, H. S. Kim, J. S. Park, J. B. Seon, S. J. Seo, S. J. Kim, E. Lee, H. Lee, S. H. Jeon, S. Han, and S. Y. Lee,” High mobility zinc oxynitride-TFT with operation stability under light-illuminated bias-stress conditions for large area and high resolution display applications,” IEDM, 12, 112, 2012.
    [68] K. H. Ji, J. I. Kim, H. Y. Jung, S. Y. Park, Y. G. Mo, J. H. Jeong, J. Y. Kwon, M. K. Ryu, S. Y. Lee, R. Choi, and J. K. Jeong, “The Effect of Density-of-State on the Temperature and Gate Bias-Induced Instability of InGaZnO Thin Film Transistors,” Journal of The Electrochemical Society, vol. 157, no. 11, pp. H983-H986, 2010.
    [69] W. F. Chung, T. C. Chang, H. W. Li, S. C. Chen, Y. C. Chen, T. Y. Tseng, and Y. H. Tai, “Environment-dependent thermal instability of sol-gel derived amorphous indium-gallium-zinc-oxide thin film transistors,” Applied Physics Letters, vol. 98, no. 15, pp. 152109, 2011.
    [70] J. K. Jeong, S. Yang, D. H . Cho, S. H. K. Park, C. S. Hwang, and K. I. Cho, “Impact of device configuration on the temperature instability of Al–Zn–Sn–O thin film transistors,” Applied Physics Letters, vol. 95, no. 12, pp. 123505, 2009.
    [71] G. W. Chang, T. C. Chang, J. C. Jhu, T. M. Tsai, Y. E. Syu, K. C. Chang, Y. H. Tai, F. Y. Jian, and Y. C. Hung, “Suppress temperature instability of InGaZnO thin film transistors by N2O plasma treatment including thermal-induced hole trapping phenomenon under gate bias stress,” Appl. Phys. Lett., vol. 100, no. 18, pp. 182103, 2012.
    [72] Xinyuan Zhao and David Vanderbilt, “Phonons and lattice dielectric properties of zirconia,” Physical Review B, vol. 65, no. 7, pp. 075105, 2002.
    [73] H. Kim, P. McIntyre, C. Chui, K. Saraswat, and S. Stemmer, “Engineering chemically abrupt high-k metal oxide/silicon interfaces using an oxygen-gettering metal overlayer,” Journal of Applied Physics, vol. 96, no. 6, pp. 3467-3472, 2004.
    [74] M. Ryu, T. S. Kim, K. S. Son, H. S. Kim, J. S. park, J. B. Seon, S. J. Seo, S. J. Kim, E. Lee, H. Lee, S. H. Jeon, S. Han and S. Y. Lee, “High mobility zinc oxynitride -TFT with operating stability under light-illuminated bias-stress conditions for large area and high resolution display applications,” IEDM Tech Dig., pp. 112-114, 2012.
    [75] K. C. Ok, H. J. Jeong, H. M. Lee, J. Park and J. S. Park,” Comparative studies on the physical and electronic properties of reactivelysputtered ZnO and ZnON semiconductors,” Ceramics International, 41, 13281–13284 , 2015 .
    [76] Y. Ye, R. Lim, and J. M White,” High Mobility Amorphous Metal Oxynitride Thin Film Semiconductor,” in MRS Fall Meeting & Exhibit , 2010.
    [77] S. Lee, A. Nathan1, Y. Ye , Y. Guo1 and J. Robertson, “Localized Tail States and Electron Mobility in Amorphous ZnON Thin Film Transistors,” Scientific Reports , 5, 13467 , 2015.
    [78] R. Long, Y. Dai, L. Yu, M. Guo, and B. Huang,” Structural, electronic, and optical properties of oxygen defects in Zn3N2,” ACS J. Phys. Chem. B, vol. 111, no. 13, pp. 3379-3383, 2007.
    [79] S. Lee, K. Ghaffarzadeh, A. Nathan, J. Robertson, S. Jeon, C. Kim, I H. Song, and U I. Chung,” Trap-limited and percolation conduction mechanisms in amorphous oxide semiconductor thin film transistors,” Appl. Phys. Lett., vol. 98, no. 20, 203508, 2011.
    [80] Y. Han, H. Yan, Y. C. Tsai, Y. Li, Q. Zhang, H. Ping and D. Shieh ,” Influences of Nitrogen Doping on the Electrical Characteristics of Indium-Zinc-Oxide Thin Film Transistors,” IEEE Transactions on Electron Devices, vol 16, NO. 4, 2016.
    [81] H. Kim, W. C. Choi, “Controlled Zr doping for inkjet-printed ZTO TFTs,” Ceramics International, vol. 43, no. 6, pp. 4775-4779, 2017.
    [82] Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang, and H. H. Hng,” Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air,” Journal of Applied Physics , 94, 354 2003.
    [83] K .Haga, T .Suzuki, Y .Kashiwaba, H .Watanabe, B .P .Zhang ,and Y .Segawa,” High-quality ZnO films prepared on Si wafers by low-pressure MO-CVD,” Thin Solid Films 433, 131–134 , 2003.
    [84] Yan Ye, Rodney Lim, and John M. White,” High mobility amorphous zinc oxynitride semiconductor material for thin film transistors,” J. Appl. Phys. 106, 074512 , 2009.
    [85] Y. Ye, R. Lim, H. You, E. Scheer, A. Gaur, H. C. Hsu, J. Liu, D. K. Yim, A. Hosokawa, and J. M. White,” Development of High Mobility Zinc Oxynitride Thin Film Transistors,” SID Symp. Dig Tech. Paper, vol. 44, no. 1,pp. 14-17 , 2013.
    [86] H. S. Kim, S. H. Jeon, J. S. Park, T. S. Kim, K. S. Son, J.-B. Seon, S.-J. Seo, S.-J. Kim, E. Lee, J. G. Chung, H. Lee, S. Han, M. Ryu, S. Y. Lee, and K. Kim,” Anion control as a strategy to achieve high-mobility and high-stability oxide thin-film transistors,” Sci. Rep. 3, 1459 , 2013.
    [87] E. Lee, A. Benayad, T. Shin, H. Lee, D. S. Ko, T. S. Kim, K. S. Son, M. Ryu, S. Jeon, and G. S. Park,” Nanocrystalline ZnON; High mobility and low band gap semiconductor material for high performance switch transistor and image sensor application,” Scientific Reports , 4, 4948 , 2014.
    [88] C. H. Hung, S. J. Wang, P. Y. Liu, C. H. Wu, N. S. Wu, H. P. Yan, and T. H. Lin, “Using co-sputtered ZrSiOx gate dielectrics to improve mobility and subthreshold swing of amorphous IGZO thin-film transistors,” 74th Annual Device Research Conference (DRC), 2016.
    [89] J. Park, H. J. Jeong, H. M. Lee, H. H. Nahm, and J. S. Park,” The resonant interaction between anions or vacancies in ZnON semiconductors and their effects on thin film device properties,” Scientific Reports, 7, 2111 , 2017.
    [90] S. H. Kim, J. J. Pyeon, W. C. Lee, D. S. Jeong, S. H. Baek, J. S. Kim, and S. K. Kim,” Growth Enhancement and Nitrogen Loss in ZnOxNy LowTemperature Atomic Layer Deposition with NH3,” J. Phys. Chem. C , 119, 23470−23477 , 2015.
    [91] M. Wang, L. Zhang, D. Wang, L. Yan, G. Yuan, G. Wang,” High Mobility Zinc Oxynitride TFT for AMOLED,” SID, 14, 4503-0949, 2014.
    [92] D. H. Kim, M. J. Park, and H. I. Kwon ,” Effect of Channel Layer Thickness on Electrical and Thermal Stabilities of High-Mobility Zinc Oxynitride Thin-Film Transistors, ECS Journal of Solid State Science and Technology, 6, Q109-Q113, 2017.
    [93] J. Park et al., "A study on the electron transport properties of ZnON semiconductors with respect to the relative anion content," Scientific reports, vol. 6, p. 24787, 2016.

    無法下載圖示 校內:2024-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE