| 研究生: |
郭國慶 Kuo, Kuo-Ching |
|---|---|
| 論文名稱: |
1-10 μm 鋯鈦酸鉛厚膜之研製與特性量測 Development and Characterization of 1-10 μm PZT Sensing/Actuation Films for MEMS Applications |
| 指導教授: |
張凌昇
Jang, Ling-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 微機電系統工程研究所 Institute of Micro-Electro-Mechancial-System Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 鋯鈦酸鉛 、微機電 |
| 外文關鍵詞: | PZT, MEMS |
| 相關次數: | 點閱:57 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋯鈦酸鉛(PZT) 是個應用領域非常廣的壓電材料,舉凡電容器、記憶體、致動器及感應器,皆拜其良好的壓電性質所賜。但PZT 膜仍舊有某些限制,例如裂縫、漏電流、位移量小等問題,而溶膠凝膠法為備製PZT 膜的重要方法之一。
本論文以PZT 壓電材料之基本性質研究,並以溶膠凝膠法備製PZT 厚膜,量測其特性並與基本性質比較。本研究與傳統的溶膠凝膠法備製方法最大的不同為快速熱處理,其優點為減少製程時間及減少因長時間的熱處理產生的殘留應力,已成功的備製出1~10 μm 的PZT膜,並進行組成檢驗及特性量測。在電子顯微鏡之金相觀察及X 光繞射檢測的結果,其組成正確且在膜厚增加的情況下晶粒也會相對變大。在電性質方面,具有140~160 的相對介電係數。以7.24 μm 膜厚而言,其矯頑電場及殘餘極化量分別為6.44 V/μm、-6.12 V/μm 及3.63 μC/cm2,並由矯頑電場可發現以Sol-gel 法備製的PZT 膜不需經過Poling 即有壓電性質;在機械性質量測方面,PZT 膜可有效的驅動懸臂梁在模態下振動,且具良好的線性特性。
最後建議可由環境的改善及PZT sol 濃度的控制下,減少裂縫的增加,例如在無塵室製作PZT 膜以減少空氣中粒子的附著;低濃度的PZT sol 可將PZT 膜表面的裂縫填補,由以上的方法可備製品質更好的膜。以本研究為基礎以供本實驗室未來微傳感器的研製及性質量測。
Lead zirconate titanate (PZT), a piezoelectric material has opened a wide variety of applications in the field of capacitors, memories, sensors and actuator owing to
its excellent piezoelectric effect. There are limits about PZT films : crack, leakage,
small displacement, and so on. The goal of this project is to fabricate crack-free,
reliable sensitivity, high-actuation PZT films for micro sensors and microactuators.
Sol-gel processing is one of the most important methods in preparing high quality
PZT films.
This research investigates foundation and processing of PZT. Compared with foundation, the results of characteristic measurements were reasonable. Improved
sol-gel processing with RTA (Rapid thermal annealing) was different with conventional method. The advantages include less processing time and reduced residual stress. PZT
films of 1~10 μm was fabricated successfully. The microstructure of the film was observed by scanning electron microscopy and the crystallization was monitored by
the X-ray diffraction. The composition was correct and grains became bigger with thicker films. Relative dielectric constant was 140~160. Coercive field and remnant
polarization were 6.44 V/μm,-6.12 V/μm, and 3.63 μC/cm2, respectively. The PZT films had piezoelectric properties without poling. The PZT films could actuate cantilever specimen linearly.
An improved environment and a process of PZT sol concentration modulation are suggested to reduce the film crack. For example, processing PZT films at a clearn
room environment could reduce partical sedimentation on the substrate and to fill up the cracks using by using low concentration of PZT sol. Finally, this research
result could be foundations of farter application on micro-transducers.
[1] Spearing, S.M.,“Materials issues in microelectromechanical systems”,Acta
Materialia, v 48, n 1, p 179-196, 2000
[2] 周卓明,“壓電力學”,全華科技圖書,2003
[3] Robert W.Schwartz, “Chemical Solution Deposition of Perovskite Thin Films”,
Chem. Mater. v 9, p 2325-2340, 1997
[4] M Daglish BEng, et al. “Ferroeletcric thin films-research, development and
commercialization”
[5] G. De Cicco, et al. “Pyroelectricity of PZT-based thick-films”, Sensors and
Actuators v 76, p 409–415, 1999
[6] T.L. Jordan, et al. “Piezoelectric Ceramics Characterization”,
ICASE Report No. 2001-28, 2001
[7] M.Lukacs, et al. “Sol-gel PZT Thick Films for Ultrasonic Imaging”, IEEE-EMBC
and CMBEC, Theme 2: Imaging 1995
[8] Galassi C., et al. “ PZT-based Suspensions for Tape Casting”, Journal of the
European Ceramic Society, v 17, n 2-3, p 367-371, 1997
[9] Funakubo, Hiroshi, et al. “ Deposition condition of epitaxially grown PZT films
by CVD”, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic
Society of Japan, v 102, n 1188, p 795-798, 1994
[10] Luqian Weng, et al. “Effect of acetylacetone on the preparation of PZT materials
in sol–gel processing” Materials Science and Engineering B , v 96, Issue 3,
p 307-312, 2002
[11] John D. Mackenzie, et al. “Ferroelectric Materials by the Sol-gel
Method”J.Sol-gel Sci&Tech, v 8, p 673-679, 1997
80
[12] Van Tassel J, et al. “Effect of solution processing on PZT thin films prepared
by a hybrid MOD solution deposition route” Journal of Electroceramics, 3(3),
p 261-268, 1999
[13] Sweeney T, et al., “ Electrophoretic deposition of PZT ceramic films”, IEEE
International Symposium on Applications of Ferroelectrics, v 1, p 193-196, 1996
[14] M G Cain, et al. “Electronic property measurements for piezoelectric ceramics:
Technical notes.” NPL REPORT CMMT (A)98, 1998
[15] Yi-Chu Hsu, et al. “Demonstration and characterization of PZT thin-film
sensors and actuators for meso- and micro-structures”Sensors and Actuators A,
v 116, p 369-377, 2004
[16] Bernnard Jaffe, et al. “Piezoelectric Ceramics”, Academic Press Limited.
1971
[17] Takuro Ikeda, “Fundamentals of Piezoelectricity”, Ohmsha, Ltd. 1990
[18] 汪建民,”陶瓷技術手冊(上)”,中華民國科技發展促進會,1994
[19] 許樹恩、吳泰伯,X 光繞射原理與材料結構分析,中國材料科學學會,1996
[20] http://episte.math.ntu.edu.tw/
[21] 陳文照、曾春風、游信和,材料科學與工程導論,高立圖書有限公司,2003
[22] A.J. Moulson, et al. “ ElectroceramicsMaterials‧ Properties‧Applications”,
Chapman&Hall, New York 1990.
[23] David K. Cheng, “Field and wave electromagnetics”, Prentice Hall.
[24] 吳朗, “電子陶瓷─壓電”,全欣科技圖書,1994
[25] http://164.125.76/lectures/ferro/ferroelectric.htm
[26] Daniel Royer and Eugene Dieulesaint, “Elastic Waves in Solids”, Springer, New
York 2000.
[27] Joel F. Rosenbaum, “Bulk Acoustic Wave Theory and Devices”, Artech House,
81
Boston
[28] Daniel J.Inman, “Engineering Vibration”, Prentice Hall, U.S.A