| 研究生: |
羅冠麟 Luo, Guan-Lin |
|---|---|
| 論文名稱: |
二氧化碳地質封存潛能岩層三維應力破壞準則:以牛山背斜為例 Develop the Three Dimensional Failure Criteria for the Potential CO2 Storage Site: The Nioushan Anticline as Case Study |
| 指導教授: |
吳建宏
Wu, Jian-Hong 李德河 LI, DE-HE |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 牛山背斜 、二氧化碳地質封存 、中空三軸 、破壞準則 、三維應力 |
| 外文關鍵詞: | Nioushan Anticline, CO2 geological storage, Hollow cylinder test, Failure criteria, Three dimensional stress |
| 相關次數: | 點閱:135 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
所謂二氧化碳地質封存,主要是將二氧化碳超臨界流體透過管路以高壓注入地下,如舊油氣層、地下煤層以及深部地下鹽水層等地下封存構造中。由於二氧化碳注入過程中必須壓縮或擠開岩層中既有的流體,因此注入壓力必須大於儲存層中既存液體的液壓。惟較高的注入壓力將可能引發岩層產生新的破裂或使岩層中既存的斷層產生滑動進而使封存的二氧化碳洩漏而出。
由於二氧化碳擠注過程及營運儲存壓力,將改變地質封存岩石的有效應力,甚至造成岩層產生破裂而導致二氧化碳洩漏等問題。因此若能瞭解地質封存岩石的破壞準則將能做為二氧化碳地質封存工作時,二氧化碳注儲壓力之參考。為獲得封存岩石的破壞準則,通常可透過傳統三軸壓縮試驗。但由於傳統三軸壓縮試驗假設中間主應力與最小主應力相同,忽略中間主應力對岩石破壞強度的影響。因此,本研究將透過中空三軸試驗的方式,針對牛山構造中的蓋岩層儲存崁下寮層泥岩與儲存層六重溪層砂岩,建立封存岩石的三維應力破壞準則。最後,利用建立的三維應力破壞準則評估六重溪層砂岩的注儲壓力。
nderstanding the in-situ stresses of geological CO2 storing rock together with its failure criterion is significant in order to estimate its maximum allowable storage pressure. However, the in-situ stresses are very complicated since the storing formation is subjected to effects such as extrusion and compaction, etc, where the three principal stresses are all different (σ1≠σ2≠σ3). For this reason, establishing the three-dimensional failure criterion of geological CO2 storing rock will help estimating its storage pressure. Therefore, hollow cylinder tests are proceeded on Liuchunghsi Formation sandstone, which is the storing rock of Nioushan Anticline in southwest Taiwan to probe its deviatoric stress variation under different hydrostatic pressure and angle of deviation, and the three-dimensional failure criterion is then established based on test results. Finally, the maximum allowable storage pressure of Liuchunghsi Formation sandstone can be estimated using established three-dimensional failure criterion.
1.吳榮章、范振暉、宣大衡、余輝龍、吳健一、陳大麟、洪克銘,「台灣進行二氧化碳捕獲地下封存之初步構想」
http://www.ctci.org.tw/public/Attachment/911014934578.pdf
2.IPCC特別報告,「二氧化碳捕獲和封存」,2005 http://www.ipcc.ch/pdf/special-reports/srccs/srccs_spm_ts_cn.pdf
3.王沛夫,「由世界應力量測資料探討不同地體構造區的應力特性」,國立中央大學應用地質研究所碩士論文,桃園,2004
4.行政院環境保護署網站,http://www.epa.gov.tw
5.何信昌、謝凱旋、高銘健、陳華玟,「五萬分之一台灣地質圖及說明書–新化圖幅」,第五十號,經濟部中央地質調查所出版,共 75 頁,2005
6.呂明達、宣大衡、黃雲津、范振暉,「台灣陸上二氧化碳地質封存潛能推估」,鑛冶,第五十二卷,第三期,第 154–161 頁,2008
7.俞旗文,「二氧化碳捕獲與封存」,水利土木科技資訊季刊,第41期,第27 – 32頁,2008
8.姜禮仙,「岩石材料在主應力軸旋轉下之力學行為研究」,國立成功大學土木工程研究所碩士論文,台南,1993
9.宣大衡、范振暉,「二氧化碳地質封存所面對之問題」,工業污染防治,第 102 期,第109 – 125頁,2007
10.范振暉、宣大衡,「以地下封存方式進行二氧化碳減量之可行性探討」,第二屆資源工程研討會論文集,台南,第 278–283 頁,2005
11.許思聰,「在主應力空間中木山層砂岩之力學行為研究」,國立成功大學土木工程研究所碩士論文,台南,1996
12.黃啟峰,「二氧化碳與地球暖化」,科學發展413期,2007
13.葉信宏,「以中空三軸試驗探討泥岩材料之力學行為研究」,國立成功大學土木工程研究所碩士論文,台南,1999
14.Alsayed M. I., “Utilising the Hoek triaxial cell for multiaxial testing of hollow rock cylinders,” International Journal of Rock Mechanics and Mining Sciences, Vol. 39. pp. 21-33., 1984.
15.Bachu S., “CO2 storage in geological media:Role, means, status and barriers to deployment,” Progress in Energy and Combustion Science, Vol. 34, pp. 254-273, 2008.
16.Borst R. DE., “Integration of plasticity equations for singular yield functions,” Computers & Structures, Vol. 26, NO. 5, pp. 823-829, 1987.
17.Brown E. T., “International Society of Rock Mechanics, Rock Characterization, Testing, and Monitoring: ISRM Suggested Methods,” Pergamon Press, Oxford, UK, 1981.
18.CO2CRC, http://www.co2 crc.com.au/
19.Gamble J. C., ”Durability-plasticity classification of shales and other argillaceous rocks”, Ph. D. thesis, University of Illinois, USA, 1971.
20.Hight D. W., Gens A., and Sumes M. J., “The development of a new hollow cylinder apparatus for investigating the effect of principal stress rotation in soils,” Geotechnique, Vol. 33, No. 4, pp. 335-383, 1983.
21.Hoskins E. R., “The failure of thick-walled hollow cylinders of isotropic rock,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 6, pp. 99-125, 1969.
22.ISRM, Basic geotechnical description of rock masses, ISRM commission on classification of rocks and rock masses, International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, Vol. 18, pp. 85-110, 1981
23.Kim M. K., and Lade P. V., “Modeling rock strength in three dimensions,” International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstract, Vol. 21, No. 1, pp. 21–33, 1984
24.Saada A. S., and Townsend F. C., “State of the art: Laboratory strength testing of soils”, Laboratory Shear Strength of Soil, ASTM. STP 740, Yong R. N. and Townsend F.C., Eds., American Society for Testing and Materials, pp. 7–77, 1981
25.Shah S., ”A study of the behaviour of jointed rock masses,” PhD dissertation, University of Toronto, Canada, 1992.
26.Senseny P. E., Mellegard K. D. and Wagner L. A., ”Hollow cylinder tests on natural rock salt”, Geotechnical Testing Journal, GTJODJ, Vol. 12, No. 2, pp. 157-162, 1989
27.Streit J. E., and Hills R. R., “Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock,” Energy, Vol. 29, pp. 1445–1456, 2004.
28.Wright D. K., Gens P. A. and Sadda A. S., “Shear devices for determing dynamics soil properties”, Proceeding of the Earthquare Engineering and Soil Dynamics Conference, Geotechnical Engineering Division, ASCE, Pasadena, Vol. 2, pp. 1065-1075, 1978