| 研究生: |
陳泓翔 Chen, Hung-Hsiang |
|---|---|
| 論文名稱: |
透明無色聚醯亞胺合成與性質之研究 Synthesis and Properties of Transparent Colorless Polyimides |
| 指導教授: |
許聯崇
hsu, Lien-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 聚醯亞胺 、透明 、無色 、化學環化 |
| 外文關鍵詞: | Polyimide, Transparent, Colorless, Chemical imidization |
| 相關次數: | 點閱:70 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在軟性電子產品的應用中,例如液晶顯示器(liquid-crystal display, LCD)、觸控式面板(touch panel)、軟性印刷電路板(flexible printed circuit, FPC)、電子書等,致力於開發輕、薄、可撓曲(flexible)、高透明度的設計,因此必須使用透明度高的塑膠材料,且該等材料還必須可耐受製程中約250℃以上之高溫,並符合其他設計上的特殊需求。由於聚醯亞胺膜大多具有良好的耐熱性,故為適用於軟性電子產品的材料。
聚醯亞胺膜因受到電荷移轉效應(charge transfer complex effect)之影響,而使得聚醯亞胺膜呈黃色或紅棕色。為了改善薄膜的無色透明度,已有相當多的研究提出各種透明無色聚醯亞胺的組成與製法。
本研究將以6FDA (4,4'-hexafluoroisopropylidene diphthalic anhydride)、DDS (3,3'-diaminodiphenyl sulfone)、TFDB (2,2'-bistrifluoromethyl benzidine)等單體在無水極性非質子溶劑DMAc (Dimethylacetamide)中進行縮聚合反應,合成出不同結構的聚醯亞胺前驅物,聚醯胺酸(Polyamic acid),將其於300℃高溫環化以及在室溫下化學環化後得到不同結構的透明無色聚醯亞胺。
In the application of plastic electronic products, such as liquid-crystal display, touch panel, flexible printed circuit, e-book etc., it is tended to develop light, thin, flexible, high transparent design. However, the favorable material should have good thermal stability due to the high temperature process in the electronic industry. The goal of our research is to develop polyimide films, which have excellent mechanical properties, good electrical properties, thermal properties and high transparency.
In our research, the polyimide precursor, polyamic acid (PAA), was synthesized from 4,4'-hexafluoroisopropylidene diphthalic anhydride (6FDA), 3,3'-Diaminodiphenyl sulfone (DDS) and 2,2'-bistrifluoromethyl benzidine (TFDB) in N,N-dimethylacetamide (DMAc) for 24 hours in ice bath. The PAA was cured via thermal cruing at 300℃for 1 h or chemical imidization at room temperature.
In this study, PI-Ⅰ(6FDA/DDS), PI-Ⅱ(6FDA/0.5DDS/0.5TFDB) and PI-Ⅲ(6FDA-TFDB) were synthesized. For these PIs, the maximum tensile strength was around 96.9~122.8 MPa and elongation at break was 5.93~7.76 %. The coefficient of thermal expansion was 22.51~54.07 ppm/℃. The glass transition temperature was 267~310℃. The pyrolysis temperature was above 500℃. The water absorption was lower than 1 %. The UV-vis transparency was over 88% at 500~700 nm.
[1]田宏隆, "平面顯示器用可撓式塑膠基材技術與運用," 工業材料, pp. 156-162, 2003.
[2]莊士緯, "Synthesis and Properties of Polyimide-Clay Nanocomposites," 材料科學及工程學系碩士論文, 2003.
[3]R. A. Dine-Hart and W. W. Wright, "A study of some properties of aromatic imides," Macromolecular Chemistry and Physics. vol. 143, ed, pp. 189-206, 1971.
[4]M. Hasegawa, I. Mita, M. Kochi, and R. Yokota, "Charge-Transfer emission spectra of aromatic polyimides," Journal of Polymer Science Part C: Polymer Letters, vol. 27, pp. 263-269, 1989.
[5]G. C. Eastmond and J. Paprotny, "Synthesis and properties of poly (ether imide) s derived from dihydroxynaphthalenes," Journal Of Materials Chemistry, vol. 6, pp. 1459-1464, 1996.
[6]W. A. FELD, B. RAMALINGAM, and F. W. HARRIS, "Polyimides Containing Oxyethylene Units," Journal of polymer science. Part A-1, vol. 21, pp. 319-329, 1983.
[7]P. M. Hergenrother, K. A. Watson, J. G. S. Jr, J. W. Connell, and R. Yokota, "Polyimides from 2,3,3',4'-biphenyltetracarboxylic dianhydride and aromatic diamines," Polymer, vol. 43, pp. 5077-5093, 2002.
[8]W. G. Kim and A. S. Hay, "Synthesis of soluble poly(ether imides) from bis(ether anhydrides) containing bulky substituents," Macromolecules, vol. 26, pp. 5275-5280, 1993.
[9]R. Giesa, U. Keller, P. Eiselt, and H. W. Schmidt, "Synthesis and thermal properties of aryl-substituted rod-like polyimides," Journal of Polymer Science Part A: Polymer Chemistry, vol. 31, pp. 141-151, 1993.
[10]T. Matsumoto, "Nonaromatic Polyimides Derived from Cycloaliphatic Monomers," Macromolecules, vol. 32, pp. 4933-4939, 1999.
[11]W. Volksen, H. J. Cha, M. I. Sanchez, and D. Y. Yoon, "Polyimides derived from nonaromatic monomers: synthesis, characterization and potential applications," Reactive and Functional Polymers, vol. 30, pp. 61-69, 1996.
[12]B. Jarząbek, E. Schab-Balcerzak, T. Chamenko, D. Sęk, J. Cisowski, and A. Volozhin, "Optical properties of new aliphatic-aromatic co-polyimides," Journal of Non-Crystalline Solids, vol. 299-302, pp. 1057-1061, 2002.
[13]N. Yoda and H. Hiramoto, "New Photosensitive High Temperature Polymers for Electronic Applications," Journal of Macromolecular Science: Part A-Chemistry, vol. 21, pp. 1641-1663, 1984.
[14]M. T. Bogert and R. R. Renshaw, "4-AMINO-0-PHTHALIC ACID AND SOME OF ITS DERIVATIVES," Journal of the American Chemical Society, vol. 30, pp. 1135-1144, 1908.
[15]D. W. Taylor and J. F. Kennedy, "Polyimides Edited by D. Wilson, H. D. Stenzenberger and P. M. Hergenrother, Blackie & Son Limited, Glasgow, 1990. pp. x + 297, price £62.00. ISBN 0-2 16-92680-7," Polymer International, vol. 25, pp. 199-199, 1991.
[16]G. D. Roberts and R. W. Lauver, "Quantitative analysis of PMR-15 polyimide resin by HPLC," Journal of Applied Polymer Science, vol. 33, pp. 2893-2913, 1987.
[17]J. V. Crivello, "Polyaspartimides: Condensation of aromatic diamines and bismaleimide compounds," Journal of Polymer Science: Polymer Chemistry Edition, vol. 11, pp. 1185-1200, 1973.
[18]B. N, L. A, and M. L, "Acetylene substituted polyamide oligomers," US3845018 A, 1974.
[19]C. E. Sroog, A. L. Endrey, S. V. Abramo, C. E. Berr, W. M. Edwards, and K. L. Olivier, "Aromatic polypyromellitimides from aromatic polyamic acids," Journal of Polymer Science Part A: General Papers, vol. 3, pp. 1373-1390, 1965.
[20]M. Ghosh, Polyimides: Fundamentals and Applications. New York: Taylor & Francis, 1996.
[21]Y. J. Kim, T. E. Glass, G. D. Lyle, and J. E. McGrath, "Kinetic and mechanistic investigations of the formation of polyimides under homogeneous conditions," Macromolecules, vol. 26, pp. 1344-1358, 1993.
[22]C. Jung, T. Aoyama, T. Wada, H. Sasabe, M. Jikei, and M.-a. Kakimoto, High Performance Polymers, vol. 12, pp. 205-212, 2000.
[23]A. V. Rami Reddy, "Synthesis and characterization of poly(amide–imide)s and their precursors as materials for membranes," Journal of Applied Polymer Science, vol. 75, pp. 1721-1727, 2000.
[24]A. A. Kuznetsov, "One-pot polyimide synthesis in carboxylic acid medium," High Performance Polymers, vol. 12, pp. 445-460, 2000.
[25]K.-Y. Choi and S.-K. Choi, "Synthesis and properties of poly(imide-sulfonate)s," Journal of Polymer Science: Polymer Chemistry Edition, vol. 20, pp. 1107-1117, 1982.
[26]M. Bruma, B. Schulz, T. Kopnick, and J. Robison, "Silicon-containing polyesterimides," High Performance Polymers, vol. 12, pp. 429-443, 2000.
[27]Y. Yamada, "Siloxane modified polyimides for microelectronics coating applications," High Performance Polymers, vol. 10, pp. 69-80, 1998.
[28]M. Padmanaban, M.-A. Kakimoto, and Y. Imai, "Preparation and properties of disilane-containing photodegradable aromatic polyamides from bis(p-aminophenyl)tetramethyldisilane and aromatic diacid chlorides," Journal of Polymer Science Part A: Polymer Chemistry, vol. 28, pp. 1569-1578, 1990.
[29]F. W. Harris, H. L. C. Hsu, C. J. Lee, B. S. Lee, F. Arnold, and S. Z. D. Cheng, "Organo-soluble, segmented rigid-rod polyimides. Synthesis and properties," in Abstracts of the 4th International Conference on Polyimides, October 30, 1991 - November 1, 1991, Ellenville, NY, USA, 1991.
[30]F. W. Harris, "Synthesis of aromatic polyimides from dianhydrides and diamines," in Polyimides, D. Wilson, H. Stenzenberger, and P. Hergenrother, Eds., ed: Springer Netherlands, pp. 1-37, 1990.
[31]Y. J. Tong, X. D. Huang, and T. S. Chung, "A New Strategy To Prepare Rodlike/Flexible Polyimide Blends through Poly(amic acid) Amine Salt Precursors," Macromolecules, vol. 34, pp. 5748-5751, 2001.
[32]M. J. Brekner and C. Feger, "Curing studies of a polyimide precursor," Journal of Polymer Science Part A: Polymer Chemistry, vol. 25, pp. 2005-2020, 1987.
[33]M.-J. Brekner and C. Feger, "Curing studies of a polyimide precursor. II. Polyamic acid," Journal of Polymer Science Part A: Polymer Chemistry, vol. 25, pp. 2479-2491, 1987.
[34]M. Konieczny, H. Xu, R. Battaglia, S. L. Wunder, and W. Volksen, "Curing studies of the meta, para and 50/50 mixed isomers of the ethyl ester of 4,4’-oxydianiline/pyromellitic dianhydride polyamic acid," Polymer, vol. 38, pp. 2969-2979, 1997.
[35]J. A. Kreuz, A. L. Endrey, F. P. Gay, and C. E. Sroog, "Studies of thermal cyclizations of polyamic acids and tertiary amine salts," Journal of Polymer Science Part A-1: Polymer Chemistry, vol. 4, pp. 2607-2616, 1966.
[36]M. M. Koton, T. K. Meleshko, V. V. Kudryavtsev, P. P. Nechayev, Y. V. Kamzolkina, and N. N. Bogorad, "Investigation of the kinetics of chemical imidization," Polymer Science U.S.S.R., vol. 24, pp. 791-800, 1982.
[37]R. J. Cotter, C. K. Sauers, and J. M. Whelan, "The Synthesis of N-Substituted Isomaleimides," The Journal of Organic Chemistry, vol. 26, pp. 10-15, 1961.
[38]R. J. W. Reynolds and J. D. Seddon, "Amine salts of polypyromellitamic acids," Journal of Polymer Science Part C: Polymer Symposia, vol. 23, pp. 45-56, 1968.
[39]R. W. Snyder, B. Thomson, B. Bartges, D. Czerniawski, and P. C. Painter, "FTIR studies of polyimides: thermal curing," Macromolecules, vol. 22, pp. 4166-4172, 1989.
[40]C. A. Pryde, "IR studies of polyimides. I. Effects of chemical and physical changes during cure," Journal of Polymer Science Part A: Polymer Chemistry, vol. 27, pp. 711-724, 1989.
[41]S. Diaham, M. L. Locatelli, T. Lebey, and D. Malec, "Thermal imidization optimization of polyimide thin films using Fourier transform infrared spectroscopy and electrical measurements," Thin Solid Films, vol. 519, pp. 1851-1856, 2011.
[42]J.-H. Chang and K. M. Park, "Thermal cyclization of the poly(amic acid): thermal, mechanical, and morphological properties," European Polymer Journal, vol. 36, pp. 2185-2191, 2000.
[43]M. Kotera, T. Nishino, and K. Nakamae, "Imidization processes of aromatic polyimide by temperature modulated DSC," Polymer, vol. 41, pp. 3615-3619, 2000.
[44]A. V. Yakimanskii, V. A. Zubkov, V. V. Kudryavtsev, and M. M. Koton, "Quantum chemical study of cyclization mechanism in polyamic acids," Polymer Science U.S.S.R., vol. 28, pp. 919-927, 1986.
[45]A. Nelson, G. Guerra, D. J. Williams, F. E. Karasz, and W. J. MacKnight, "Catalytic activity of benzimidazole in the imidization of polyamic acids," Journal of Applied Polymer Science, vol. 36, pp. 243-248, 1988.
[46]M. Oba, "Effect of curing accelerators on thermal imidization of polyamic acids at low temperature," Journal of Polymer Science Part A: Polymer Chemistry, vol. 34, pp. 651-658, 1996.
[47]e. a. Y. Kawamonzen, "Study of novel curing acceleration catalysts enabling low temperature solid-phase imidization of polyamic acids," Abstracts of Papers of the American Chemical Society, vol. 222, pp. 280, 2001.
[48]Y. Ding, B. Bikson, and J. K. Nelson, "Polyimide Membranes Derived from Poly(amic acid) Salt Precursor Polymers. 1. Synthesis and Characterization," Macromolecules, vol. 35, pp. 905-911, 2001.
[49]K.-i. Fukukawa, Y. Shibasaki, and M. Ueda, "Efficient Catalyst for Low Temperature Solid-Phase Imidization of Poly(amic acid)," Chemistry Letters, vol. 33, pp. 1156-1157, 2004.
[50]K.-i. Fukukawa, T. Ogura, Y. Shibasaki, and M. Ueda, "Thermo-base Generator for Low Temperature Solid-phase Imidation of Poly(amic acid)," Chemistry Letters, vol. 34, pp. 1372-1373, 2005.
[51]K.-i. Fukukawa, Y. Shibasaki, and M. Ueda, "Direct patterning of poly(amic acid) and low-temperature imidization using a photo-base generator," Polymers for Advanced Technologies, vol. 17, pp. 131-136, 2006.
校內:2019-08-04公開