| 研究生: |
胡展源 Hu, Chan-Yuan |
|---|---|
| 論文名稱: |
淺溝槽隔離層應變工程和氮氣等離子體向氧化矽介質中掺雜氮成長氮氧化矽閘極的介電質結構之互補金屬氧化物半導體技術應用與研究 The Study of STI Strain Engineering and SiON gate dielectric by Decoupled Plasma Nitridation for advanced CMOS Technology Applications |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 共同指導教授: |
陳志方
Chen, Jone-Fang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 淺溝槽隔離層應變工程 、氮氧化矽閘極的介電質 、氮氣離子體二氧化矽介質摻雜氮成長 |
| 外文關鍵詞: | STI, SiON, DPN |
| 相關次數: | 點閱:82 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨金屬氧化物半導體場效應電晶體的尺寸進入奈米等級時,為增進元件性能,提昇載子的移動率,應變工程和提高閘極的介電質已漸成為金屬氧化物半導體場效應電晶體前段製程量產的必要技術。 本論文中對淺溝槽隔離層應變工程和氮氧化矽閘極的介電質做更完整的探討,並提出數種新的淺溝槽隔離層的先進應變工程方法和不同濃度的氮含量氮氧化矽閘極的介電質。除外,在金屬氧化物半導體場效應電晶體前段製程其多晶矽閘極晶粒結構和蝕刻技術亦是奈米等級電晶體量產必要技術之一,在此我們也提出改良製作閘極之技術,此技術非常符合奈米等級晶片製程。本論文將先進應變工程及改良之閘極成長與蝕刻技術運用於提昇奈米金屬氧化物半導體場效應電晶體元件之特性以驗証其實用性。
首先探討應變技術對元件的效能之影響,在本論文中討論到如何利用改良後的淺溝槽隔離層製程技術和新的溝槽的內壁上利用氮氣離子體二氧化矽介質摻雜氮成長之氮氧化矽層內襯,結果發現淺溝槽絕緣層應力在不同主動區擴散長度下對金屬氧化物半導體場效應電晶體的遷移率有不同之影響。而且,在此技術下因為應用了淺溝槽隔離層的應力而降低來至於淺溝槽隔離層井壁造成能帶穿遂效應退化引起的金屬氧化物半導體場效應電晶體元件接面漏電流和基材漏電流. 在改良的淺溝槽隔離層製程技術中,在製程上淺溝槽隔離層與鄰近電晶體主動區的高度差可被有效的改善。在電性上,我們發現由接面所造成的基材漏電流可被有效的降低。由擴散長度效應中,其溝槽隔離層的壓應力可被可降低進而改善N型金屬氧化物半導體場效應電晶體的劣化。如此,使用優化的溝槽隔離層製程技術可降低漏電流而且不會犧牲遷移率而造成驅動電流不足。在新的溝槽的內壁上利用氮氣離子體二氧化矽介質摻雜氮成長之氮氧化矽層內襯去取代傳統的二氧化矽內襯中,我們發現接面和次臨界區漏電流可被有效的降低。本論文亦應用此技術於靜態隨機存取存儲器中,亦發現靜態隨機存取存儲器的效能也被改善。在多晶矽的材質上本論文利用不同的成長氣體去成長多晶矽閘極。 由實驗結果中可知改良的多晶矽閘極可改善當閘極介層厚度越薄,因通道電荷所引發在多晶矽閘極的空乏效應且多晶矽薄膜表面的粗糙度亦可被有效的降低。且在金屬氧化物半導體場效應電晶體電性上,可改善汲極飽和電流和漏電流和短通道效應。且在本論文中亦把此技術應於靜態隨機存取存儲器中也對其作研究探討。在多晶矽下的閘極介電質,於六十五、四十五及四十奈米製程技術下的製程是利用氮氣離子體二氧化矽介質摻雜氮的技術去成長不同摻雜氮濃度的氮氧化矽。本論文中深入探討對元件特性和可靠度的影響。在元件效能和可靠度取得平衡。在後續製程中則是整個多晶矽閘的蝕刻,而如何優化多晶矽閘蝕刻製程則是一個重點。本論文則探討在改良的多晶矽閘的蝕刻可去除成長多晶矽時造成的多晶矽凸起物缺陷且亦可改善元件電性。所以,本論文主旨說明了金屬氧化物半導體場效應電晶體前段製程對元件特性的改善和深入的探討。
In this dissertation, we study the impact of strain engineering and poly gate technologies on nano meter scale MOSFETs performances in detail. The study is divided in five parts. In the chapter 2, we propose improved STI process on MOSFET technology. Shallow trench isolation (STI) induced mechanical stress affects the device behavior in the advanced CMOS technology. This study presents how to use an optimal STI process to reduce transistor mismatch and leakage current induced standby current in SRAM. The STI induced mechanical stress affects the device behavior in the advanced CMOS technology. The optimized STI process can reduce junction and bulk leakage that occurs on the STI sidewall due to STI compressive stress enhancing boron diffusion and increasing junction electric field of STI sidewall resulting in band-to-band-tunneling (BTBT) degradation. An obviously decrease of BTBT occurs on STI edge sidewall that is observed by using the optimized STI process. Meanwhile, the optimized STI process has better length of diffusion (LOD) effect. Moreover, the optimized STI process can improve the parasitic device at STI edge because of smaller divot. In order to study more mechanical stress of STI, the novel SiON liner was grown by decoupled-plasma-nitridation (DPN) to replace pure SiO2 liner by in-situ steam generation (ISSG). The chapter 3 discusses the benefits of SiON liner growth by DPN and SiON liner induced stress compared to conventional pure oxide liner growth by ISSG. Thin STI SiON liner offers lower sub-threshold leakage current without drive current loss for transistor performance. Moreover, junction leakage current is also reduced with scaling device active area. This chapter demonstrates the influences of thin STI SiON liner growth by DPN in STI manufacture. In the chapter 4, an improved design for the polycrystalline gate is developed for 65nm low power CMOS technology. Using the fine-grain poly deposition, less poly depletion effect and decrease of the electrical gate dielectric thickness can be obtained. Also, the novel poly deposition successfully reduces the roughness of poly surface and produces smaller poly grain size after subsequent rapid thermal processing (RTP) steps. Meanwhile, the improved poly deposition can suppress short channel effect (SCE) and reduce off-state leakage current. The fine-grain poly deposition results in a better VRDB (Voltage Ramp Dielectric Breakdown) and uniformity on specific test vehicle. We have a detail discussion with fine-grain poly deposition in this chapter. In the chapter 5, In order to obtain a clear perspective concerning the time-dependent-dielectric-breakdown (TDDB) and negative bias temperature instability (NBTI) issue of P-MOSFETs, the ultra-thin gate dielectric with various effective RF powers of DPN SiON films was discussed in this chapter. In this chapter, we found that more nitrogen dose in SiON by DPN effective RF power adjustment can effectively suppress boron penetration and improve MOSFETs performance. However, it made a great impact on TDDB and NBTI. Therefore, it is important to adjust nitrogen dose by DPN effective power to balance the both. In the chapter 6, a novel poly etching method and the effect of poly pimple defect induced device mismatch on static-noise-margin (SNM) and minimum operation voltage (Vcc_min) of low-power 6T-SRAM is presented. The novel poly etching offers a straight and uniform poly profile without poly pimple defect. The improvement on circuit level is examined by the yield of scan chain and memory-built-in-self-test (MBIST) which is known to correlate well to process induced defects. The novel poly etching also improves the device mismatch and uniformity. From chapter 2 to chapter 6, the mechanical strain engineering was modulated via related STI process change and poly gate engineering technologies were also discussed by fine-grain poly growth and improved ultra-thin gate dielectric at sub-micron MOSFET technologies. In this dissertation, our researches involved widely whole major sub-micron front-end MOSFET technologies.
[1] Drazdziulis, M.; Larsson-Edefors, P. “A gate leakage reduction strategy for future CMOS circuits,” in European Solid-State Circuits Conference, pp.317, 2003.
[2] J.H. Stathis, “Reliability Limits for the Gate Insulator in CMOS Technology,” IBM J. Res. Dev., Vol. 46, pp. 265, 2002.
[3] C. C. Wu, C. H. Diaz, B. L. Lin, “Ultra-Low Leakage 0.16um CMOS for Low-Standby Power Applications,” IEDM Tech, Digest, pp 671-674, 1999.
[4] C. Smith, “Piezoresistance effect in germanium and silicon,” Phys. Rev., vol. 94, pp. 42, 1954.
[5] S. Gannavaram, N. Pesovic, and C.Öztürk, “Low temperature recessed junction selective silicon–germanium source/drain technology for sub-70 nm CMOS,” in IEDM Tech. Dig., pp. 437-440, 2000.
[6] M. Bauer, D.Weeks, Y. Zhang, and V. Machkaoutsan, “Highly tensile strained silicon–carbon alloys epitaxially grown into recessed source drain areas of NMOS devices,” ECS Trans., vol. 3, no. 7, pp. 187-196, 2006.
[7] Ortolland, C.; Morin, P.; Chaton, C.; Mastromatteo, E.; Populaire, C.; Orain, S.; et al., “Stress Memorization Technique (SMT) Optimization for 45nm CMOS” VLSI Technology, pp. 78-79, 2006.
[8] Miyashita, T.; Ikeda, K.; Kim, Y.S.; Yamamoto, T.; Sambonsugi, Y.; Ochimizu, H., et al., “High-Performance and Low-Power Bulk Logic Platform Utilizing FET Specific Multiple-Stressors with Highly Enhanced Strain and Full-Porous Low-k Interconnects for 45-nm CMOS Technology” Electron Devices Meeting, pp.251-254, 2007.
[9] A. Steegen et al., “Silicide and Shallow Trench Isolation Line Width Dependent Stress Induced Junction Leakage, “ in 2000 symposium on VLSI technology digest of technical papers, 2000.
[10] Armin T. Tilke, Chris Stapelmann, Manfred Eller, Karl-Heinz Bach, Roland Hampp, Richard Lindsay, et al., “Shallow Trench Isolation for the 45-nm CMOS Node and Geometry Dependence of STI Stress on CMOS Device Performance” IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, vol. 20, no. 2, pp. 59-67, May 2007.
[11] Daniel Chong, Won Jong Yoo and Chun Meng Lek, "Plasma Charging Damage Immunities of Rapid Thermal Nitrided Oxide and Doupled Plasma Nitrided Oxide,” Proceedings of 10th IPFA Singapore, pp. 141-143, 2003.
[12] A. Veloso, F.N. Cubaynes, A. Rothschild, S. Mertens, R. Degraeve, R. O'Connor, C. Olsen, L. Date, M. Schaekers, C. Dachs, M. Jurczak, “Ultra-thin oxynitride gate dielectrics by pulsed-RF DPN for 65 nm general purpose CMOS applications” European Solid-State Device Research, 2003. ESSDERC '03. 33rd Conference, pp. 239- 242, 2003.
[13] A. Kamgar, H.M. Vaidya, F.H. Baumann, S. Nakahara, “Impact of gate-poly grain structure on the gate-oxide reliability[CMOS]” Electron Device Letters, IEEE, Vol. 23, pp. 22-24, 2002.
[14] H. Hayama, W. I. Milne, “A new poly-silicon MOS transistor model which includes the effects of bulk trap states in grain boundary regions” Solid-State Electronics, Vol. 33, Issue 2, pp. 279-286, 1990.
[15] Gordon E. Moore, “Progress In Digital Integrated Electronics” IEDM Tech Digest pp. 11-13, 1975.
[16] Gordon E. Moore, “Lithography and the Future of Moore’s Law” Proc. SPIE Vol. 2437, pp.2-17, 1995.
[17] E. G. Colgan, R. J. Polastre, M. Takeichi, and R. L. Wisnieff, “Thin-film-transistor process-characterization test structures,” IBM J. of Research and Development, vol. 42, no. 3/4, 1998.
[18] Saxena, S., et al, Test structures and analysis techniques for estimation of the impact of layout on MOSFET performance and variability, In Proceedings of the International Conference on Microelectronic Test Structures, pp.263-266, 2004.
[19] K. Roy and S. C. Prasad, “Lower Power CMOS VLSI Circuit Design,” New York: Wiley, ch. 5, pp. 224-226, 2000.
[20] S. Thompson, P. Packan, and M. Bohr, “MOS scaling: Transistor challenges for the 21st century,” Intel Technol. J., 3rd quarter 1998.
[21] C. C. Wu, C. H. Diaz, B. L. Lin, “Ultra-Low Leakage 0.16um CMOS for Low-Standby Power Applications,” IEDM Tech, Digest, pp. 671-674, 1999.
[22] A.Chatterjee, J. Esquivel, S. Nag, I. Ali, D. Rogers, K. Taylor et al, “A shallow trench isolation study for 0.25/0.18um CMOS technologies and beyond,” Digest of Technical papers, symposium on VLSI technology, pp. 156-157, 1996.
[23] F. S. Shoucair, “Scaling, subthreshold, and leakage current mayching characteristics in high temperature (25C-250C) VLSI CMOS devices,” IEEE Trans, Components, Hybrids, Manuf. Technol. 12, No. 4, pp. 780-788, 1989.
[24] W.-C. Lee and C. Hu, “Modeling CMOS tunneling conduction and valence band electron and hole tunneling,” IEEE Trans. Electron Devices 48, No. 7, pp. 1366-1373, 2001.
[25] T. Wang, L. P. Chaiang et al, “A Comprehensive study of hot carrier stress induced drain leakage current degradation in thin oxide n-MOSMOSFETs,” IEEE Trans. Electron device 46, No. 9, pp. 1877-1882, 1999.
[26] J. Chen, T. Y. Chan et al, “Subbreakdown drain leakage current in MOSMOSFET”, IEEE Electron device Lett. 8, pp. 515-517, 1987.
[27] Ke-Wei Su, Yi-Ming Sheu et al, “A scaleable model for STI mechanical stress effect on layout dependence of MOS electrical characteristics,” IEEE, pp. 245-248, 2003.
[28] Philip Beow Yew Tan et al, “Layout dependence effect on high speed CMOS transistor leakage current,” IEEE, pp. 318-321, 2005.
[29] Wenwei Yang et al, “Analysis of GIDL dependence on STI-induced Mechanical stress,” IEEE, pp. 769-772, 2005.
[30] M. Pelgrom et al., “ Matching Properties of MOS Transistors, IEEE J. of solid state circuits, vol. 24, no 5, 1989.
[31] Lovett, S.J. et al., “Characterizing the mismatch of submicron MOS transistors” IEEE International Conference on Volume , Issue , 25-28 pp. 39 – 42, 1996.
[32] Rasit Onur Topaloglu et al., “ Standard Cell and Custom Circuit Optimization using Dummy Diffusions through STI Width Stress Effect Utilization” IEEE, pp. 619-622, 2007.
[33] Ball, M.; Rosal, J.et al., “A Screening Methodology for VMIN Drift in SRAM Arrays with Application to Sub-65nm Nodes” Digital Object Identifier IEDM, pp. 1-4, 2006.
[34] Benton H. Calhoun et al, “A 256Kb sub-threshold SRAM in 65nm SRAM,” IEEE, pp. 628-630, 2006.
[35] A. Steegen et al., “Silicide and Shallow Trench Isolation Line Width Dependent Stress Induced Junction Leakage, “ in 2000 symposium on VLSI technology digest of technical papers, 2000.
[36] Armin T. Tilke, Chris Stapelmann, Manfred Eller, Karl-Heinz Bach, Roland Hampp, Richard Lindsay, et al., “Shallow Trench Isolation for the 45-nm CMOS Node and Geometry Dependence of STI Stress on CMOS Device Performance” IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, vol. 20, no. 2, pp. 59-67, 2007.
[37] T. Speranza, et al., "Manufacturing Optimization of Shallow Trench Isolation for Advanced CMOS Logic Technology," presented at 12th Annual IEEE/SEMI Advanced Semiconductor Manufacturing Conference, (ASMC) 2001.
[38] C.S. Olsen, F. Nouri, M. Rubin, O. Laparra, G. Scott, "Stress Minimization of Corner Rounding Process during STI," presented at SPIE Conference on Microelectronic Device Technology III, Vol. 3881, pp.215 ,1999.
[39] M. Nandakumar, A. Chatterjee, S. Sridhar, K. Joyner, M. Rodder, I-C. Chen, "Shallow Trench Isolation for Advanced ULSI CMOS Technologies," IEDM Tech. Digest, pp. 133-136, 1998.
[40] C. Smith, “Piezoresistance effect in germanium and silicon,” Phys. Rev., vol. 94, pp. 42-49, 1954.
[41] S. Gannavaram, N. Pesovic, and C.Öztürk, “Low temperature recessed junction selective silicon–germanium source/drain technology for sub-70 nm CMOS,” in IEDM Tech. Dig., pp. 437-440, 2000.
[42] M. Bauer, D.Weeks, Y. Zhang, and V. Machkaoutsan, “Highly tensile strained silicon–carbon alloys epitaxially grown into recessed source drain areas of NMOS devices,” ECS Trans., vol. 3, no. 7, pp. 187-196, 2006.
[43] Ortolland, C.; Morin, P.; Chaton, C.; Mastromatteo, E.; Populaire, C.; Orain, S.; et al., “Stress Memorization Technique (SMT) Optimization for 45nm CMOS” VLSI Technology, pp. 78-79, 2006.
[44] Miyashita, T.; Ikeda, K.; Kim, Y.S.; Yamamoto, T.; Sambonsugi, Y.; Ochimizu, H., et al., “High-Performance and Low-Power Bulk Logic Platform Utilizing FET Specific Multiple-Stressors with Highly Enhanced Strain and Full-Porous Low-k Interconnects for 45-nm CMOS Technology” Electron Devices Meeting, 2007. IEDM, IEEE International Volume, pp. 251 – 254, 2007.
[45] K.C. Chen, et al., "Cycle Time and Process Improvement by Single Wafer Thermal Processing in Production Environment," presented at the 10th Int'l Conf. on Advanced Thermal Processing of Semiconductors RTP 2002, Sept. 2002.
[46] P. Ferreira, R-A. Bianchi, F. Guyader, R. Pantel, E. Granger, "Elimination of Stress Induced Silicon Defects in Very High Density SRAM Structures," presented at the 31st European Solid-State Device Research Conference, pp.427-430, 2001.
[47] Benton H. Calhoun et al, “A 256Kb sub-threshold SRAM in 65nm SRAM,” IEEE, pp. 628-630, 2006.
[48] Tuinhout, H.P.; Montree, A.H.; Schmitz, J.; Stolk, P.A., “Effects of gate depletion and boron penetration on matching of deep submicron CMOS transistors” IEEE IEDM Technical Digest., pp. 631-634, 1997.
[49] Uejima, K.; Yamamoto, T.; Mogami, T., “Highly reliable poly-SiGe/amorphous-Si gate CMOS” Electron Devices Meeting, IEDM Technical Digest, pp. 445-448, 2000.
[50] F. H. Baumann, C. P. Chang et al.,” A closer “look” at modern gate oxides,” Mater, Res, Soc. Symp., 2000, Vol. 611, C4.1.1, 2000.
[51] M. J. M. Pelgrom, A. C. J. Duinmaiger and A. P. G. Welbers, “Matching properties of MOS transistors for precision analog design,” IEEE J. Solid-State Circuits, Vol. SC-24, no. 5, pp. 1433-1440, 1989.
[52] Lakshmikumar K., Hadaway R., Copeland M., “ Characterization and modeling of mismatch in MOS transistors for precision analog design,” IEEE J. Solid-State Circuits, vol. SC-21, no. 6, pp. 1057-1066, 1986.
[53] Luo, Z.; Steegen, A.; Eller, M.; Mann, R.; Baiocco, C.; Nguyen, P.; Kim, L.; Hoinkis, M.; Ku, V.; Klee, V.; Jamin, F.; Wrschka, P.; Shafer, P.; Lin, W.; Fang, S.; Ajmera, A.; Tan, W.; Park, D.; Mo, R.; Lian, J.; Vietzke, D.; Coppock, C.; Vayshenker, A.; Hook, T.; Chan, V.; Kim, K.; Cowley, A.; Kim, S.; Kaltalioglu, E.; Zhang, B.; Marokkey, S.; Lin, Y.; Lee, K.; Zhu, H.; Weybright, M.; Rengarajan, R.; Ku, J.; Schiml, T.; Sudijono, J.; Yang, I.; Wann, C., “High performance and low power transistors integrated in 65nm bulk CMOS technology” Electron Devices Meeting, IEDM Technical Digest., pp.661-664, 2004.
[54] Jan, C.-H.; Bai, P.; Choi, J.; Curello, G.; Jacobs, S.; Jeong, J.; Johnson, K.; Jones, D.; Klopcic, S.; Lin, J.; Lindert, N.; Lio, A.; Natarajan, S.; Neirynck, J.; Packan, P.; Park, J.; Post, I.; Patel, M.; Ramey, S.; Reese, P.; Rockford, L.; Roskowski, A.; Sacks, G.; Turkot, B.; Wang, Y.; Wei, L.; Yip, J.; Young, I.; Zhang, K.; Zhang, Y.; Bohr, M.; Holt, B., “A 65nm ultra low power logic platform technology using uni-axial strained silicon transistors “ Electron Devices Meeting, IEDM Technical Digest., pp. 60-63, 2005.
[55] A. Rothschild, P. A. Kraus, T. C. Chua, F. Nouri, F. N. Cubaynes, A. Veloso, S. Mertens, L. Date, R. Schreutelkamp, M. Schaekers “Study of pulsed RF DPN process parameters for 65 nm node MOSFET gate dielectrics” Materials Research Society Meeting, 2004.
[56] Veloso, A. Cubaynes, F.N. Rothschild, A. Mertens, S. Degraeve, R. O'Connor, R. Olsen, C. Date, L. Schaekers, M. Dachs, C. Jurczak, M. “Ultra-thin oxynitride gate dielectrics by pulsed-RF DPN for 65 nm general purpose CMOS applications” European Solid-State Device Research, pp. 239-242, 2003.
[57] MAYADAS A F, SHATZKES M. “Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces” J. Phys Rev B, Vol. 1, Issue 4, pp. 1382-1389, 1970.
[58] Wakabayashi, H.; Yamamoto, T.; Yoshida, K.; Soda, E.; Tokunaga, K.I.; Mogami, T.; Kunio, T., ”Ultralow Resistance W/poly Si Gate CMOS Technology Using Amorphous-Si/TiN Buffer Layer” IEEE transactions on electron devices, Vol. 49, no. 2, pp. 295-300, 2002.
[59] E. Rauly, , a, O. Potavina, F. Balestraa and C. Raynaud “On the subthreshold swing and short channel effects in single and double gate deep submicron SOI-MOSFETs” Solid-State Electronics, Vol. 43, no.11, pp. 2033-2037, 1999.
[60] M. Jagadesh Kumar and G. Venkateshwar Reddy “Diminished Short Channel Effects in Nanoscale Double-Gate Silicon-on-Insulator Metal–Oxide–Semiconductor Field-Effect-Transistors due to Induced Back-Gate Step Potential” Japan. J. Appl. Phys. , Vol. 44, pp. 6508-6509, 2005.
[61] Scott Thompson, Mohsen Alavi, Makarem Hussein, Pauline Jacob, Chris Kenyon, Peter Moon, Matthew Prince, Sam Sivakumar, Sunit Tyagi, Mark Bohr, “130nm Logic Technology Featuring 60nm Transistors, Low-K Dielectrics, and Cu Interconnects” Intel Technology Journal, Vol. 6, pp. 5-13, 2002.
[62] D. Louis, M. E. Nier, C. Fery, M. Heitzmann, A. M. Papon, S. Renard “Poly-Si gate patterning issues for ultimate MOSFET” Microelectronic Engineering, Vol. 61-62, pp. 859-865, 2002.
[63] Jiajing, Wang; Satyanand, Nalam; Benton H; “Analyzing static and dynamic write margin for nanometer SRAMs” International Symposium on Low Power Electronics and Design, pp. 129-134, 2008.
[64] H.S. Momose, S.I. Nakamura, T. Ohguro, T. Yoshitomi, E. Morifuji, T. Morimoto, Y. Katsumata, H. Iwai, “Study of the manufacturing feasibility of 1.5-nm direct-tunneling gate oxide MOSFETs: uniformity, reliability, and dopant penetration of the gate oxide,” Electron Devices, IEEE Transactions on Vol. 45, Issue 3, pp. 691-700, 1998.
[65] Daniel Chong, Won Jong Yoo and Chun Meng Lek, "Plasma Charging Damage Immunities of Rapid Thermal Nitrided Oxide and Doupled Plasma Nitrided Oxide,” Proceedings of 10th IPFA Singapore, pp. 141-143, 2003.
[66] Z. J. Ma, J.C. Chen, Z. H. Liu, J.T. Krick, Y. C. Cheng, C. Hu, P.K. Ko, "Suppression of boron penetration in P+ poly-silicon gate P-MOSFETs using low- temperature gate-oxide N2O anneal," IEEE Electron Dev. Lett., Vol 15, pp. 109-111, 1994.
[67] M. Alavi, S. Jacobs, S. Ahmed, C. H. Chem, P. McGregor, “ Effect of MOS Device Scaling on Process Induced Gate Charging,” 2nd Int. Symp. P2ID, pp. 7-10, 1997.
[68] Haggag, A.; McMahon, W.; Hess, K.; Cheng, K.; Lee, J, Lyding, J, “High-performance chip reliability from short-time-tests-statistical models for optical interconnect and HCI/TDDB/NBTI deep-submicron transistor failures” Reliability Physics Symposium, 2001. Proceedings. 39th Annual. 2001 IEEE International, pp. 271 – 279, 2001.
[69] J. Bude, “Fermi Level Dependent Anode Hole Injection Model,” IEEE 1998.
[70] E. Cartier, D. J. DiMaria, D. A. Buchanan, J. H. Stathis, W. W. Abadear and R. R. Vollersten, “Degradation of Thin Silicon Dioxide Gate Oxides by Atomic Hydrogen,” IEEE trans, Electron Devices, 1994, vol. 99, Page.1234.
[71] D. J. Dimaria and J. Stasiak, “Trap Creation in Silicon Dioxide Produced by Hot Electrocns,” J. Appl. Phys., Vol. 65, pp. 2342-, 1998.
[72] D. J. Dimaria, “Correlation of Trap Creation with Electron Heating in Silicon Sioxide,” Appl, Phys. Lett., vol. 51, pp.655-657, 1987.
[73] Chen, M.G.; Liu, C.H.; Lee, M.T.; Fu, K.Y., “New experimental findings on SILC and SBD of ultra-thin gate oxides,” Integrated Reliability Workshop Final Report, 1999. IEEE International, 18-21, pp. 114 – 117, 1999.
[74] S. Chakravarthi et al.,” A comprehensive framework for predictive modeling of negative bias temperature instability” IRPS, 2004.
[75] A.T. Krishnan et al., “Negative bias temperature instability mechanism: The role of molecular hydrogen,” APL, 2006.
[76] K.O. Jeppson and C. M. Svensson, “Negative bias stress of MOS devices at high electric fields and degradation of MOS devices,” J. Appl. Phys., Vol. 48, no. 5, pp. 2004 – 2014, 1977.
[77] Shimpei Tsujikawa et al., “Two Concerns about NBTI Issue: Gate Dielectric Scaling and Increasing Gate Current” IEEE, 42nd annual international reliability physics symposium, pp. 28-34, 2004.
[78] Kunhyuk Kang et al., “NBTI Induced Perfoemance Degradation in Logic and Memory Circuits: How Effectively Can We Approach a Reliability Solution?” IEEE, pp. 726-731, 2008.
[79] G. Chen et al., “Dynamic NBTI of PMOS transistors and its impact on device life time” IRPS, 2003.
[80] Leland Chang et al., “CMOS circuit performance enhancement by surface orientation optimization “ IEEE, Vol. 51, pp. 1621- 1627, 2004.
[81] Mizuno, T et al., “Physical mechanism for high hole mobility in [110]-surface strained- and unstrained-MOSFETs” Electron Devices Meeting, IEDM, pp. 33.6.1 - 33.6.4, 2003.
[82] Buin, A.K et al., “Enhancement of hole mobility due to confinement in small diameter [110] silicon nanowires” Semiconductor Device Research Symposium, pp.1 – 2, 2007.
[83] Yider Wu et al., “The Performance and Reliability of PMOSFET’s with Ultrathin Silicon Nitride/Oxide Stacked Gate Dielectrics with Nitrided Si-SiO2 Interfaces Prepared by Remote Plasma Enhanced CVD and Post-Deposition Rapid Thermal Annealing” IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol. 47, no. 7, pp. 1361-1369, 2000.
[84] S. Campbell et al., “MOSFET transistors fabricated with high permittivity TiO dielectrics,” IEEE Trans. Electron Devices, Vol. 44, p. 104-109, 1997.
[85] Chun Meng Lek et al., “Impact of decoupled plasma nitridation of ultra-thin gate oxide on the performance of p-channel MOSFETs “ Semicond. Sci. Technol. Vol.17, no 6, pp. 25-28, 2002.
[86] R. Mahamdi ea al., “Study of redistribution and activation of boron implanted into nitrogen doped silicon thin films” 4th International Conference: Sciences of Electronic Technologies of Information and Telecommunications, March 25-29, 2007
[87] Daniel Bauza “ Extraction of Si-SiO2 interface trap densities in MOS structures with ultrathin oxides” IEEE, EDL, Vol.23, pp. 658-660, 2002.
[88] Yang, J.Y.C et al., “The Correlation of Interface Defect Density and Power-Law Exponent Factor on Ultra-thin Gate Dielectric Reliability” Integrated Reliability Workshop Final Report, IEEE, pp. 179-181, 2006.
[89] Yandong He et al., “Study on near-flatband-voltage SILC in ultra-thin plasma nitrided gate oxides” Solid-State and Integrated Circuits Technology, 2004. Proceedings. 7th International Conference on Vol. 2, pp. 804 – 807, 2004.
[90] J. H. Stathis “Reliability limits for the gate insulator in CMOS technology” IBM journal of research and development, Vol. 46, pp. 265-286, 2002.
[91] D.Buc hanan, J.St athis, E.C artier, and D.Di Maria, “On the Relationship between Stress Induced Leakage Currents and Catastrophic Breakdown in Ultra-Thin SiO2 Based Dielectrics,” Microelectronic Engineering, vol.36, pp. 329–332, 1997.
[92] Degraeve, R. et al., “A new model for the field dependence of intrinsic and extrinsic time-dependent dielectric breakdown” ; Electron Devices, IEEE Transactions on Vol. 45, Issue 2, pp.472 – 481, 1998.
[93] J. H. Stathis et al., “ Reliability Projection for Ultra-Thin Oxides at Low Voltage” presented at the IEEE International Electron Devices Meeting (IEDM '98), San Francisco, 1998.
[94] R. Degraeve et al., “A New Analytic Model for the Description of the Intrinsic Oxide Breakdown Statistics of Ultra-Thin Oxides” Microelectron. & Reliability, Vol. 36, 1996, pp. 1639-1642.
[95] G. Groeseneken et al.,”On the Breakdown Statistics and Mechanisms on Ultra-Thin Oxides and Nitrided Oxides” presented at the Symposium on Silicon Nitride and Silicon Dioxide Thin Insulating Films, 1997.
[96] J. H. Stathis, ”Quantitative Model of the Thickness Dependence of Breakdown in Ultra-Thin Oxides” Microelectron. Eng. Vol. 36, pp.325-328, 1997.
[97] Wang, S et al., “Effect of Nitrogen on the Frequency Dependence of Dynamic NBTI-Induced Threshold-Voltage Shift of the Ultrathin Oxynitride Gate P-MOSFET” Electron Device Letters, IEEE Vol. 29, Issue 5, pp.483 – 486, 2008.
[98] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, S. R. Nassif, E. J. Nowak, D. J. Pearson, and N. J. Rohrer, “High-performance CMOS variability in the 65-nm regime and beyond,” IBM J. of Research and Development, vol. 50, no. 4/5, pp. 433-449, 2006.
[99] M. J. M. Pelgrom, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, pp. 1433–1440, 1989.
[100] H. Tuinhout et al., “Matching of MOS transistors,” presented at the Mead Microelectronics, Inc. Advanced Engineering Course, Laussane, Switzerland, 1998.
[101] M. Niewczas, “Characterization of the threshold voltage variation: A test chip and the results,” in IEEE Int. Conf. Microelectronics Test Structures, vol. 10, pp. 169–172, 1997.
[102] C. Michael and M. Ismail, “Statistical modeling of device mismatch for analog integrated MOS circuits,” IEEE J. Solid-State Circuits, vol. 27, pp. 154–166, 1992.
[103] M. Pelgrom, H. Tuinhout, and M. Vertregt, “Transistor matching in analog CMOS applications,” in IEDM Tech. Dig., pp. 915–918, 1998.
[104] Debjyoti Ghosh, Swarup Bhunia, Kaushik Roy. "Multiple Scan Chain Design Technique for Power Reduction during Test Application in BIST". Defect and Fault Tolerance in VLSI Systems (DFT), 2003, 8, November, 2003.
[105] Yuejian Wu, “Diagnosis of Scan Chain Failures” Proceedings of the 13th International Symposium on Defect and Fault-Tolerance in VLSI Systems, IEEE Computer Society, pp. 217-222, 1998.
[106] Da. Wang, “Design-for-Testability Features and Test Implementation of a Giga Hertz General Purpose Microprocessor” Journal of Computer Science and Technology, vol. 23, pp. 1037-1046, 2008.
[107] Luo, Z, “High performance and low power transistors integrated in 65nm bulk CMOS technology” Electron Devices Meeting, IEDM Technical Digest. IEEE International, pp. 661 – 664, 2004.
[108] Jan, C.-H, “A 65nm ultra low power logic platform technology using uni-axial strained silicon transistors” Electron Devices Meeting, IEDM Technical Digest. IEEE International, pp. 60 – 63, 2005.
[109] Jiajing Wang, “Analyzing static and dynamic write margin for nanometer SRAMs” International Symposium on Low Power Electronics and Design, pp. 129-134, 2008.