| 研究生: |
洪采襄 Hung, Tsai-Hsiang |
|---|---|
| 論文名稱: |
異質變異下的平均數分析 Analysis of Means under Heteroscedasticity |
| 指導教授: |
溫敏杰
Wen, Miin-Jye |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 39 |
| 中文關鍵詞: | 一階段抽樣方法 、二階段抽樣方法 、單因子設計 、平衡設計 |
| 外文關鍵詞: | Single-stage sampling procedure, Two-stage sampling procedure, One-way layout, Balanced design |
| 相關次數: | 點閱:126 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
平均數分析是藉由圖形的方式來比較所蒐集到的k(>=3)個處理平均數是否與整體平均數間有顯著差異的分析方法。當k個母體的變異數不等且未知時,
Nelson和Dudewicz(2002)利用Stein(1945)所提出之二階段抽樣方法進行異質變異下的平均數分析。二階段抽樣方法,顧名思義,就是樣本抽取分兩個階段,亦即在第二階段時需要加抽樣本,但有時加抽樣本不易執行,故本研究採用一階段抽樣方法解決平均數分析於變異數不等且未知的情況,同時可避免二階段抽樣加抽樣本不易執行的問題。
The analysis of means (ANOM) is a graphical procedure which compares k (>3) treatment means to see if any of them has signi cant diifference from the overall mean. For unknown and unequal variances, Nelson and Dudewicz (2002) developed a two-stage sampling procedure which was proposed by Stein (1945) to deal with ANOM under heteroscedasticity (HANOM). However, additional samples must be taken at the second stage, which is not practical or feasible all the time. Thus, in this thesis, we discuss HANOM in one-way layout with balanced design under the heteroscedastic situation by single-stage sampling procedure which could avoid disadvantages of two-stage sampling procedure.
Chen, H. J. and Lam, K. (1989). Single-stage interval estimation of the largest normal mean under heteroscedasticity. Communications in Statistics - Theory
and methods, 18(10), 3703-3718.
Chang, C. J., Wu, J. S., Lu, F. H., Lee, H. L., Yang, Y. C., and Wen, M. J. (1998). Fasting plasma glucose in screening for diabetes in the Taiwanese population. Diabetes Care, 21(11), 1856-1860.
Cheng, H. J. (2007). A study of two-stage rike early warning models of mortgage in Tainan city. Unpublished master thesis, National Cheng Kung University, Taiwan.
Nelson, P. R. and Dudewicz, E. J. (2002). Exact analysis of means with unequal variances. Technometrics, 44(2), 152-160.
Stein, C. (1945). A two-sample test for a linear hypothesis whose power is independent of the variance. The Annals of Mathematical Statistics, 16(3), 243-258.
Wen, M. J. and Chen, H. J. (1994). Single-stage multiple comparison procedures under heteroscedasticity. American Journal of Mathematical and Management Sciences, 14, 1-48.
Wludyka, P. S. and Nelson, P. R. (1997). An analysis-of-means-type test for variances from normal populations. Technometrics, 39(3), 274-285.
Wu, S. F. and Chen, H. J. (1998). Multiple comparisons with the average for normal distributions. American Journal of Mathematical and Management Sciences, 18(1), 193-218.
Wu, S. F. and Liao, B. X. (2004). A simulation study of multiple comparisons with the average under heteroscedasticity. Communications in Statistics - Simulation and Computation, 33(3), 639-659.