簡易檢索 / 詳目顯示

研究生: 陳驊
Chen, Hua
論文名稱: 管口爆炸波與渦漩交互作用及消音探討
Investigation of Blast/Vortex Interaction and Noise Reduction at a Duct Exit
指導教授: 梁勝明
Liang, S. M.
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 126
中文關鍵詞: 爆炸波震波聲波渦漩交互作用視流
外文關鍵詞: flow visualization, blast wave, shock wave, acoustic wave, vortex, interaction
相關次數: 點閱:161下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   最近幾年,環境保護問題已經成為很重要的問題。尤其是由交通工具排放噪音的問題,更是其中最值得注意的。由內燃機及排氣系統所排放的噪音可以歸類為三種形式:紊流噪音(turbulence noise)、震動噪音(shell noise)及輻射噪音(radiated noise)。在過去,大部分與輻射噪音相關的論文都將重點放在空氣動力問題中主要音源之一的震波與渦漩交互作用。在本研究中,我們考慮由管口排放的平面爆炸波問題,並採用蔣及蘇(Jiang and Shu )(1996)的五階準確度的加權基本不震盪法來探討這個問題。本論文先探討基礎的平面爆炸波與渦漩交互作用來作為了解噪音產生及其基本機制的墊腳石。由目前的結果可以知道弱爆炸波會導致正規反射(regular reflections)而強爆炸波會導致馬赫反射(Mach reflections)。而且由平面爆炸波與渦漩交互作用所產生的聲音與震波與渦漩交互作用所產生的聲音一致,是屬於四極矩(quadrupolar)的性質。由爆炸波與渦漩交互作用所產生的第一道聲音(precursor)在近場有以r-1 衰退的趨勢,而在遠場則是以r-1/2 衰退,這趨勢與對應之震波與渦漩交互作用的結果相吻合,至於第二道聲音(second sound)在遠場似乎以r-1/2 來衰退。在本研究中還發現在平面爆炸波與渦漩交互作用中有第四道聲音(fourth sound)的存在,這是在震波與渦漩交互作用中所沒有的。

      在本研究中發現產生聲音的數目與爆炸波的強度有關。此外,二次震波與渦漩交互作用在渦量產生過程中扮演一個相當重要的角色。我們也發現產生的渦漩對在爆炸波與渦漩交互作用完成後會週期性地旋轉,並且渦漩對的環流量強度在爆炸波遠離至下游時會維持一定值。

      一般來說,噪音控制的方法有兩種:一個是主動控制,而另一個是被動控制。對主動控制而言,它需要額外的裝置來抑制噪音並且通常花費較昂貴;對被動控制而言, 修改排氣系統的幾何形狀相當簡單並且也較常使用。在實際應用上,利用修改排氣系統的幾何外型來控制噪音是相當普遍並有效的方法,所以管口平滑轉角在本論文中被採用,並利用平滑角度(δ)及平滑表面半徑(R)來探討這個問題,而且R·δ就是平滑轉角的表面圓弧長度。由計算結果顯示減弱渦漩強度可以成功地降低由爆炸波在轉角繞射所導致的震波與渦漩交互作用所產生的噪音。另外,本研究中發現最大的噪音減低發生在θ = 0º (沿著管道中心線的方向),而最少的噪音減低則是發生在θ = 90º (沿著垂直管口的壁面方向)。

      Environment protection issues have become important in recent years. Particularly, noise emitted from automobiles is a serious problem. Noise emitted from an internal combustion engine and an exhaust system can be classified as three types: turbulence noise, shell noise, and radiated noise. In the past, most papers were related to the radiated noise concentrated on shock/vortex interaction, which was one of the major sources of noise and was closely related to some aerodynamic problems. In this study, the problem of a planar blast wave discharged from a duct exit is considered. A numerical approach of a 5th-order WENO scheme of Jiang and Shu (1996) is used to investigate this problem. The fundamental study of planar blast wave/vortex interaction is a stepping-stone to understand the noise generation and the basic mechanism. The present results show that weak blast waves result in regular reflections associated with the blast-wave front while strong blast waves result in Mach reflections. The sound generated by the planar blast/vortex interaction is of quadrupolar nature, as in a shock/vortex interaction. The precursor generated by the blast/vortex interaction tends to decay like r-1 in the near field and r-1/2 in the far field as in the corresponding shock/vortex interaction. As for the second sound, it seems to decay like r-1/2 in the far field. The fourth sound generated by a planar blast/vortex interaction is found to exist in the present study, but not in the case of shock/vortex interaction.

      It is also found that the number of sound is dependent on the strength of the blast wave. The secondary shock/vortex interaction plays an important role in the vorticity generation process. Moreover, it is found that the induced vortex pair rotates cyclically after the interaction, and the circulation (or strength) of the two vortices is constant when the incident blast wave has moved far downstream.

      Generally, there are two kinds of methods for noise control, one is active control and the other is passive control. For active control, it needs additional devices to suppress noise and usually costs. For passive control, modifying the exhaust system geometry can be easily applied and is often used. In practical applications, modifying exhaust system geometry is a common and useful method to control noise, so a smoothed corner at the duct exit is adopted and is investigated with different values of two parameters – the smoothing angle (δ) and the radius of the smoothed surface (R), where R·δ is the circular arc length for the smoothed corner. The computed results show that weakening the vortex strength can successfully reduce the noises associated with the shock/vortex interaction due to the blast wave diffraction around the duct corner. Moreover, It is found that the maximum noise reduction occurs at θ = 0º (along the centerline of the duct) and the minimum noise reduction occurs at θ = 90º (along the vertical wall at the duct exit).

    CONTENTS ABSTRACT ……………………………………………………………i CONTENTS ……………………………………………………………iii LIST OF TABLES ……………………………………………………vi LIST OF FIGURES …………………………………………………vii NOMENCLATURES ……………………………………………………xii Chapter I INTRODUCTION 1   1.1 Motivation and Problem 1   1.2 Planar Blast/Vortex Interaction 2   1.3 Blast Wave Discharged from an Open-Ended Duct 4   1.4 Noise Reduction by Using Smoothed Corner at a Duct Exit 8   1.5 Objectives 11 II MATHEMATICAL FORMULATION 12   2.1 Compressible Euler Equations 12   2.2 Generalized Coordinates 14   2.3 Vorticity Transport Equation 15   2.4 Source Terms in Lighthill’s Equation 16   2.5 Acoustics Defined 17 III NUMERICAL MEHOD 19   3.1 Introduction 19   3.2 WENO Scheme 21   3.3 Applying to Euler Systems 25   3.4 Time Discretization 26   3.5 Choice of Time Step 26   3.5 Boundary Conditions 27    3.6.1 Inviscid Wall Boundary Condition 27    3.6.2 Symmetric Boundary Condition 27    3.6.3 Nonreflecting Boundary Condition 28 IV RESULTS AND DISCUSSIONS 30   4.1 Validation of the Numerical Method 30    4.1.1 Sound Generation by Shock/Vortex Interaction 32    4.1.2 Grid Independence 33    4.1.3 Shock Diffraction at a Ninety-Degree Sharp Convex Corner 33   4.2 Planar Blast/Vortex Interaction and Sound Generation 33    4.2.1 Physical Problem 33    4.2.2 Basic Flow Structure of Blast/Vortex Interaction 35    4.2.3 Sound Generation by Blast/Vortex Interaction 36    4.2.4 Summary 40   4.3 Planar Blast Waves Discharged form an Open-Ended Duct 41    4.3.1 Physical Problem 41    4.3.2 Flow Structures 42    4.3.3 Sound Generation 44    4.3.4 Vorticity Production 45    4.3.5 Summary 48   4.4 Noise Reduction by Using Smoothed Corner at a Duct Exit 49    4.4.1 Physical Problem 49    4.4.2 Flow Structures 50    4.4.3 Vorticity Production 51    4.4.4 Circumferential Pressures 55    4.4.5 Summary 58 V CONCLUSIONS AND SUGGESTIONS 60   5.1 Conclusions 60   5.2 Suggestions 63 REFERENCES ……………………………………………………………64 APPENDICES………………………………………………………………70 TABLES.……………………………………………………………………73 FIGURES……………………………………………………………………80 VITA PUBLICATION LIST

    1. Abate, G. and Shyy, W., “Dynamic Structure of Confined Shocks Undergoing Sudden Expansion,” Progress in Aerospace Sciences, Vol. 38, pp. 23-42, 2002.

    2. Ben-Dor, G. and Takayama, K., “The Phenomena of Shock Wave Reflection – a Review of Unsolved Problems and Future Research Needs,” Shock Waves, Vol. 2, pp. 211-223, 1992.

    3. Chatterjee, A., “Shock Wave Deformation in Shock-Vortex Interactions,” Shock Waves, Vol. 9, pp. 95-105, 1999.

    4. Chen, H. and Liang, S. M., “Planar Blast/Vortex Interaction and Sound Generation,” AIAA J., Vol. 40, No. 11, pp. 2298-2304, 2002.

    5. Dosanjh, D. S. and Weeks, T. M., “Interaction of a Starting Vortex as Well as a Vortex Street with a Traveling Shock Wave,” AIAA J., Vol. 3, No. 2, pp. 216-223, 1965.

    6. Ellzey, J. L., Henneke, M. R., Picone, J. M. and Oran, E. S., “The Interaction of a Shock with a Vortex: Shock Distortion and the Production of Acoustic Waves,” Phys. Fluids, Vol. 7, No. 1, pp. 172-184, 1995.

    7. Ellzey, J. L., Henneke, M. R., “The Shock-Vortex Interaction: the Origins of the Acoustic Wave,” Fluid Dyn. Res., Vol. 21, No. 3, pp. 171-184, 1997.

    8. Endo, M., Futagami, Y. and Iwamoto, J., “ Relation Between the Flow Pattern Downstream of the Duct and the Noise,” JSAE Review, Vol. 21, pp. 125-132, 2000.

    9. Grasso, F. and Pirozzoli, S., “Shock-Wave-Vortex Interactions: Shock and Vortex Deformations, and Sound production,” Theoret. Comput. Fluid Dynamics, Vol. 13, No. 6, pp. 421-456, 2000.

    10. Harten, A., Engquist, B., Osher S. and Charkravarthy, S., “Uniformly High-Order Accurate Essentially Non-Oscillatory Schemes III,” J. Comput. Phys., Vol. 71, pp. 231-303, 1987.

    11. Higashiyama, J. and Iwamoto, J., “Experimental Study of Exhaust Noise Generated by Pulsating Flow Downstream of Pipe End,” JSAE Review, Vol. 20, pp. 73-70, 2000.

    12. Hillier, R., “Computation of Shock Wave Diffraction at a Ninety-Degree Convex Edge,” Shock Waves, Vol. 1, pp. 89-98, 1991.

    13. Hollingsworth, M. A. and Richards, E. J., “A Schlieren Study of the Interaction Between a Vortex and a Shock Wave in a Shock Tube,” Aeronautical Research Council Fluid Motion Subcommittee Report ARC, 17985, FM 2323, 1955.

    14. Inoue, O. and Hattori, Y., “Sound Generation by Shock-Vortex Interactions,” J. Fluid Mech., Vol. 380, pp. 81-116, Feb. 1999.

    15. Inoue, O., “Propagation of Sound Generated by Weak Shock-Vortex Interaction,” Phys. Fluids, Vol. 12, No. 5, pp. 1258-1261, 2000.

    16. Inoue, O., Hattori, Y. and Sasaki, T., “Sound Generation by Coaxial Collision of Two Vortex Rings,” J. Fluid Mech., Vol. 424, pp. 327-365, 2000.

    17. Inoue, O. and Takahashi, Y., “Successive generation of Sounds by Shock-Strong Vortex Interaction,” Phys. Fluids., Vol. 12, No. 12, 2000.

    18. Jiang, G.-S. and Shu, C.-W., “Efficient Implementation of Weighted ENO Schemes,” J. Comput. Phys., Vol. 126, No. 1, pp. 202-228, 1996.

    19. Jiang, Z., Onodera, K. and Takayama, K., “Evolution of Shock Waves and the Primary Vortex Loop Discharged from a Square Cross-Sectional Tube,” Shock Waves, Vol. 9, pp. 1-10, 1999.

    20. Jiang, Z. and Takayama, K., “An Investigation into the Validation of Numerical Solutions of Complex Flowfields,” J. Comp. Phys., Vol. 151, pp. 479-497, 1999.

    21. Jiang, Z., Takayama, K., Babinsky, H. and Meguro, T., “Transient Shock Wave Flows in Tubes with a Sudden Change in Cross Section,” Shock Waves, Vol. 7, pp. 151-162, 1997.

    22. Jones, A. D., “Modelling the Exhaust Noise Radiated from Reciprocating Internal Combustion Engines – A Literature Review,” Noise Control Eng. J., Vol. 23, No. 1, pp.12-31, 1984.

    23. Kim, H. D. and Setoguchi, T., “Study of the Discharge of Weak Shocks from an Open end of a Duct,” J. Sound and Vibration, Vol. 226, No. 5, pp. 1011-1028, 1999.

    24. Kim, J. T., Kim, Y. M., Maeng, J. S., Lyu, M. S. and Ku, Y. G., “Unstructured Grid Finite Volume Analysis for Acoustic and Characteristics in Exhaust Silencer Systems,” Numerical Heat Transfer, Part A, Vol. 30. No. 5, pp. 439-457, 1996.

    25. Li, H. and Ben-Dor, G., “Reconsideration of Pseudo-Steady Shock Wave Reflections and Transition Criteria Between Them,” Shock Waves, Vol. 5, pp. 59-73, 1995.

    26 Liang, S. M., Wang, J. S., and Chen, H., “Numerical Study of Spherical Blast-Wave Propagation and Reflaction,” Shock Waves, Vol. 12, pp. 59-68, 2002.

    27 Lighthill, M. J., “The Diffraction of Blast. I,” Proc. Roy. Soc. A., Vol. 198, pp. 454-470, 1949.


    28. Liu, X.-D., Osher, S. and Chan. T., “Weighted Essentially Non-Oscillatory schemes, J. Comput. Phys., Vol. 115, pp. 200-212, 1994.

    29 Meadows, K. R., “A Study of Fundamental Shock Noise Mechanisms,” NASA Technical Paper 3605, 1997.

    30. Meadows, K. R., Kumar, A. and Hussaini, M. Y., “Computational Study on the Interaction Between a Vortex and a Shock Wave,” AIAA J., Vol. 29, No. 2, pp.174-179, 1991.

    31. Ofengeim, D. K. and Drikakis, D., “Simulation of Blast Wave Propagation over a Cylinder,” Shock Waves, Vol. 7, pp. 305-317, 1997.

    32. Picone, J. M. and Boris, J. P., “Vorticity Generation by a Shock Propagation Through Bubles in a Gas,” J. Fluid Mech., Vol. 189, pp. 23-51, April 1988.

    33. Pulliam, T. H., “Euler and Thin Layer Navier-Stokes Codes: ARC2D, ARC3D,” Notes for COMPUTATIONAL FLUID DYNAMICS USER’S WORKSHOP, Th University of Tennessee Space Institute Tullahoma, Tennessee, March 12-16, 1984.

    34. Ribner, H. S., “Perspectives on Jet Noise,” AIAA J., Vol. 19, No. 12, pp.1513-1526, 1981.

    35. Ribner, H. S., “Cylindrical Sound Wave Generated by a Ring Vortex-Shock Wave Interaction,” AIAA J., Vol. 23, No. 11, pp. 1708-1715, 1985.

    36. Roe, P. L., “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” J. Comput. Phys., Vol. 43, pp. 357-372, 1981.

    37. Szumoswki, A., Sobieraj, G., Selerowicz, W. and Piechna, J., “Starting Jet-Wall Interaction,” J. Sound and Vibration, Vol. 232. No. 4, pp. 695-702, 2000.

    38. Shu, C.-W. and Osher, S., “Efficiently Implementation of the Essentially Non-Oscillatory Shock-Capturing Schemes,” J. Comput. Phys. Vol. 77, pp. 439-471, 1988.

    39. Shu, C.-W. and Osher, S., “Efficiently Implementation of the Essentially Non-Oscillatory Shock-Capturing Schemes II,” J. Comput. Phys. Vol. 83, pp. 32-78, 1989.

    40. Skews, B. W., “The Shape of a Diffracting Shock Wave,” J. Fluid Mech., Vol. 29, pp. 297-304, 1967.

    41. Skews, B. W., “The Perturbed region behind a diffracting Shock Wave,” J. Fluid Mech., Vol. 29, pp. 705-719, 1967.

    42. Sun, M. and Takayama, K., “The Formation of a Secondary Shock Wave behind a shock Wave Diffracting at a Convex Corner,” Shock Waves, Vol. 7, pp. 287-295, 1997.

    43. Takayama, F., Ishii, Y., sakurai, A. and Kambe, T., “Self-Intensificaion in Shock Wave and Vortex Interaction,” Fluid Dyn. Res., Vol. 12, pp. 343-348, 1993.

    44. Takayama, K. and Inoue, O., “Shock Wave Diffraction over a 90 Degree Sharp Corner - Posters Presented at 18th ISSW,” Shock Waves, Vol. 1, pp. 301-312, 1991.

    45. Taylor, G. I., “On the Dissipation of eddies,” Aero. Res. Commun. 598, 1918.

    46. Thompson, K. W., “Time Dependent Boundary Conditions for Hyperbolic Systems, II,” J. Comp. Phys., Vol. 68, No. 1, pp. 1-24, 1987.

    47. Thompson, K. W., “Time Dependent Boundary Conditions for Hyperbolic Systems II,” J. Comp. Phys., Vol. 89, No. 2, pp. 439-461, 1990.

    48. Whitham, G. B., “A New Approach to Problems of Shock Dynamics. Part 1. Two-Dimensional Problems,” J. Fluid Mech., Vol.2, pp. 145-171, 1957.

    49. Whitham, G. B., “A New Approach to Problems of Shock Dynamics. Part 2. Three-Dimensional Problems,” J. Fluid Mech., Vol. 5, pp. 369-386, 1959.

    50. Yang, J., Kubota, T., and Zukoski, E. E., “An Analysis and Computational Investigation of Shock-Induced Vortical Flows,” AIAA Paper 92-0316, 1992.

    51. Yates, L. A., “Images Constructed from Computed Flowfields,” AIAA J., Vol. 31, No. 10, pp. 1877-1884, 1993.

    52. Yu, Q. and Grönig, H., “Shock Waves from an Open-Ended Shock Tube with Different Shapes,” Shock Waves, Vol. 6, pp. 249-258, 1996.

    下載圖示 校內:立即公開
    校外:2002-12-20公開
    QR CODE