| 研究生: |
陳志文 Tan, Chee-Woon |
|---|---|
| 論文名稱: |
抗菌型生醫陶瓷性質探討 Investigation of Antibacterial Properties of Bioceramic |
| 指導教授: |
陳瑾惠
Chern Lin, Jiin-Huey 朱建平 Ju, Chien-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 抗菌鹽類 、金黃色葡萄球菌 、生醫陶瓷 |
| 外文關鍵詞: | Antimicrobial salts, Staphylococcus aureus, Bioceramic |
| 相關次數: | 點閱:102 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了降低骨科手術術後感染的風險,因而本實驗進行抗菌型生醫陶瓷的探討,使用抗菌鹽類當添加劑加入具有良好生物相容性與骨誘導性的雙相磷酸鈣與硫酸鈣的複合材中,製作成塊狀生醫陶瓷。
本實驗使用金黃色葡萄球菌當抑菌圈測試實驗的菌種,測試抗菌型生醫陶瓷的抗菌效果。首先探討四種抗菌鹽類添加入複合材後的抗菌效果。然後選擇抗菌效果較好與溶解速率較慢的C型抗菌鹽類添加入複合材中,探討此生醫陶瓷的各種性質。為了延緩抗菌鹽類在Hanks’solution中的釋放,本實驗配製成含有高分子的磷酸氫二銨((NH4)2HPO4)硬化劑,簡稱為P1、P2及P3,與C型抗菌鹽類及複合材混合製作成塊狀生醫陶瓷。
本實驗發現隨著添加高分子的量增加,塊狀生醫陶瓷的抗菌效果維持天數也增長。由未添加高分子的只能維持1~2天,增加至3~7天。含P3高分子的C型生醫陶瓷除了於第7天有微小的抑菌圈出現外,在浸泡Hanks’solution 10天後的細胞毒性測試中,對NIH-3T3細胞亦無不良反應,細胞存活率達85%以上,說明了此抗菌型生醫陶瓷具有潛質應用於骨頭修損上。
關鍵字:抗菌鹽類;金黃色葡萄球菌;生醫陶瓷
In order to reduce the risk of postoperative infection in orthopedic surgery, thus this experiment investigation antibacterial properties of bioceramic, we select antimicrobial salts additive to has good biocompatibility and bone-induced of biphasic calcium phosphate and calcium sulfate composite, and made into a block bioceramic.
In this study, we select the Staphylococcus aureus strains as the zone of inhibition test experiments, to test the antibacterial effect of the bioceramics. First, we test the antibacterial effect of four antimicrobial salts into the composite. Then, we select have better antibacterial effect and slower dissolution rate of C-type antimicrobial salts add into the composite material to explore the various properties of the bioceramics. In order to delay the release of antimicrobial salts in Hanks’solution, this experiment is formulated into the polymer-containing diammonium phosphate ((NH4)2HPO4) hardener, referred to as P1, P2, and P3, and C-type antimicrobial salts and composite materials mixed into a block bioceramics.
This was found, as the block bioceramic add the amount of the polymer increased, the antibacterial effect of maintain number of days also increased. Not add any polymer for 1~2 days, and after add the amount of the polymer increased to 3~7 days. Bioceramics of P3 and C-type antimicrobial salts, had a small zone of inhibition in seven days, the cytotoxicity test in the tenth day, NIH-3T3 cells had no adverse reactions, cell viability was 85% or more, indicating this antibacterial bioceramics have the potential to be applied on bone repair damage.
Keywords: Antimicrobial salts;Staphylococcus aureus;Bioceramic
A.Dion, M.Langman, G.Hall, M.Filiaggi,Vancomycin release behaviour from amorphous calciumpolyphosphate matrices intended for osteomyelitis treatment, 2005.
Akif Ince, MD, Norbert Schütze, PhD, Christian Hendrich, MD, Roger Thull, PhD, Jochen Eulert, MD, and Jochen F. Löhr, MD (FRCSC). In Vitro Investigation of Orthopedic Titanium-Coated and Brushite-Coated Surfaces Using Human Osteoblasts in the Presence of Gentamycin, 2008.
Amathieu L. and Boistelle R., Crystallization Kinetics of Gypsum from Dense Suspension of Hemihydrate in Water, Journal of Crystal Growth,1988;88: 184.
Block M.S, Kent T.N, Guerra. Implants in dentistry. W.B. Saunders Company,1997.
Bogdan S. Necula, Lidy E. Fratila-Apachitei, Sebastian A.J. Zaat, Iulian Apachitei, Jurek Duszczyk, In vitro antibacterial activity of porous TiO2–Ag composite layers against methicillin-resistant Staphylococcus aureus, 2009.
Bohner M., Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury Int J Care Injured 2001;31:S-D37-47.
Bohner M. and Baumgart M., Theoretical Model to Determine the Effects of Geometrical Factors on the Resorption of Calcium Phosphate Bone Substitutes, Biomaterials, 2004;25[17] 3569–3582.
Bohner M., Gbureck U., Barralet J.E. Technological issues for the development of more efficient calcium phosphate bone cements: A critical assessment Biomaterials, 2005; 26 6423–6429
Bohner M., New hydraulic cements based on α-tricalcium phosphate – calcium sulfate dihydrate mixtures; Biomaterials 2004;25 741–749.
Breed AL., Experimental production of vascular hypotension, and bone marrow and fat embolism with methylmethacrylate cement. Traumatic hypertension of bone. Clin Orthop, 1974; 102: 227-44.
Chow LC., Calcium phosphate materials: reactor response ; Adv Dent Res 2(1):181-184, August, 1988
Chow LC, Takagi S., Calcium phosphate hydroxyapatite precursor and methosd for making and using the same. US Patent 1996, No.5542973.
Chow LC. Development of self-setting calcium phosphate cement. The Centennial Memorial Issue 1991;99(10):954-964.
Chow L C, J. Ceram. Soc. Japan Int. Edn. 99 (1992) 927.
Clemson Advisory Board for Biomaterials “Definition of the word biomaterial”, The 6th annal international biomaterial symposium. April 1974:20-24.
Costantino PD, Friedman CD: Synthetic bone graft substitutes. Otolaryngol Clin North Am 1994;27:1037-1074.
C. P.Klein, A. A. Driessen, K. de Groot, and A. van den Hooff, ‘‘Biodegradation Behavior of Various Calcium Phosphate Materials in Bone Tissue,’’ J. Biomed. Mater. Res., 17 [5] 769–784,1983.
Driskell TD, Heller AL, Koenigs J. Dental treatments. US Patent 1975, No. 3913229.
De Groot K. Medical applications of calcium phosphate bioceramics. The centennial memorial issue of the ceramic society of Japan 1991;99:943-953.
Fernaâ ndez* E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA. Calcium phosphate bone cements for clinical applications, Journal of Materials Science: Materials in Medicine 10 (1999) 169±183.
Fukase Y, EANES' E.D, TAKAGI3 S., CHOW L.C, and BROWN W.E.; Setting Reactions and Compressive Strengths of Calcium Phosphate Cements;J Dent Res 69(12):1852-1856, December, 1990.
Helen Vester, Britt Wildemann, Gerhard Schmidmaier, Ulrich Stockle, Martin Lucke, Gentamycin delivered from a PDLLA coating of metallic implants In vivo and in vitro characterisation for local prophylaxis of implant-related osteomyelitis, 2010.
Hench LL, Bioceramics: from concept to clinic. J Am Ceram Soc 1991;74:1487-1510.
Huiliang Cao, Xuanyong Liu, Fanhao Meng, Paul K. Chu, Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects, Biomaterials, 2010.
Hulbert SF, Hench LL, Forbers D, Bowman LS. History of bioceramics. Ceram Internat. 1982;8:131-140.
Jarcho M. CaP ceramics as hard tissue prosthetics. Clin Orthop 1981;157:259-78.
Jarcho M. Hydroxyapatite synthesis and characterization in dense polycrystalline forms. J Mater Sci 1976;11:2027-35.
Jarcho M, Kay J, Gumaer K, Doremus R, Drobeck H. Tissue, cellular and subcellular events at a bone-ceramic hydroxyapatite interface. J Bioengineering 1977;1:79-92.
Jayesh P. Ruparelia, Arup Kumar Chatterjee, Siddhartha P. Duttagupta, Suparna Mukherji, Strain specificity in antimicrobial activity of silver and copper nanoparticles, 2008.
Jonck LM, Grobbelaar CJ. "The biological compatibility of glass ionomer cement in joint replacement." Clin. Mater. , 1989; 4: 85-107.
Kokubo T. "Recent progress in glass-based materials for biomedical applications." The Centennial Memorial Issue of The Ceramic Society of Japan 99: 965-973, 1991.
K.Soballe, H.Brockstedt-Rasmussen, E.S.Hansen, and C.Bunger, ‘‘Hydroxyapatite Coating Modifies Implant Membrane Formation. Controlled Micromotion Studied in Dogs,’’ Acta Orthop. Scand., 63 [2]128–140 ,1992.
Lewis K. N, Thomas M. V, Puleo D. A.; Mechanical and degradation behavior of polymer-calcium sulfate composites. J Mater Sci: Mater Med 2006;17: 531–537.
Lewry A.J. and J. Williamsoon, "The setting of gypsum plaster partIII the effect of additives and impurities."J of materials science. Vol 29, p6085~6090, 1994.
Lingzhou Zhao, Paul K. Chu, Yumei Zhang, Zhifen Wu, "Review Antibacterial Coatings on Titanium Implants.", 2009.
Lingzhou Zhao, Hairong Wang, Kaifu Huo, Lingyun Cui, Wenrui Zhang, Hongwei Ni, Yumei Zhang, Zhifen Wu, Paul K. Chu, Antibacterial nano-structured titania coating incorporated with silver nanoparticles, Biomaterials, 2011.
L .Peltier, The use of plaster of Paris to fill large defects in bone. Am J Surg 97:311-315, 1959
L.Smith, ‘‘Ceramic–Plastic Material as a Bone Substitute,’’ Arch Surg., 87 653–661 ,1963.
Marı´a C. Cortizo, Tamara G. Oberti, Marı´a S. Cortizo, Mo´nica A. Ferna´ ndez Lorenzo de Mele, ‘‘Chlorhexidine delivery system from titanium/polybenzyl acrylate coating: Evaluation of cytotoxicity and early bacterial adhesion,’’ Dentistry, 2012.
M.Bohner and F.Baumgart, ‘‘Theoretical Model to Determine the Effects of Geometrical Factors on the Resorption of Calcium Phosphate Bone Substitutes,’’ Biomaterials, 25 [17] 3569–3582 ,2004.
M.Bohner, New hydraulic cements based on a-tricalcium phosphate–calcium sulfate dihydrate mixtures; Biomaterials 25 741–749,2004.
M.Bohner, U. Gbureck, J.E. BarraletTechnological issues for the development of more efficient calcium phosphate bone cements: A critical assessmentBiomaterials 26 6423–6429,2005.
Michel Kouassi, DDS, Pierre Michaı¨lesco, DDS, PhD, Anne Lacoste-Armynot, PhD, and Philippe Boudeville, PhD, Antibacterial Effect of a Hydraulic Calcium Phosphate Cement for Dental Applications, 2003.
Millenium Res Group, US markets for large-joint reconstructive implants, 2008.
Monma H, Goto M and Kohmura T , Gypsum & Lime, 1984 No.188, 11-16
Moore W.R, Graves S.E, Bain G.I. Synthetic Bone Graft Substitutes. ANZ J. Surg 71: 354-361,2001.
M. Stigter, J. Bezemer, K. de Groot, P. Layrolle. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy, 2004.
M.Sidqui , P.Collin , C.Vitte : Osteoblast adherence and resorption activity of isolated osteoclasts on calcium sulphate hemihydrate. Biomaterials 16:1327-1332; 1995.
Myerson A.S. Handbook of Industrial Crystallization Butterworth Heinemann Series, Chemical Engineering. USA, 1993.
Nilsson M., Ferna´ndez E. Sarda S. Lidgren 1L., Planell J.A. "Characterization of a novel calcium phosphate/sulphate bone cement." J Biomed Mater Res 61: 600–607, 2002.
Nilsson M., Wielanek L., J.S. Wang, K. E. Tanner, L. Lidgren. "Factors Influencing the Compressive Strength of an Injectable Calcium Sulfate-Hydroxyapatite Cement." Journal of Materials Science: Materials in Medicine 14: 399-404, 2003.
N. Matsumoto, K. Sato, K. Yoshida, K. Hashimoto, Y. Toda, Preparation and characterization of b-tricalcium phosphate co-doped with monovalent and divalent antibacterial metal ions, 2009.
Park JB. Biomaterials, An Introduction. Plenum Press. New York, 1979.
Park JB. Biomaterials science and engineering. Plenum Press, New York and London, 1985.
Park JB, Bronzino JD. Biomaterials principles and applications. CRC Press, New York, 2003.
Park JB, Lakes RS. Biomaterials: an introduction. Plenum Press, 2nd ed., New York, 1992.
P. K.Stephenson, M. A. Freeman, P. A. Revell, J. Germain, M. Tuke, and C. J. Pirie, ‘‘The Effect of Hydroxyapatite Coating on Ingrowth of BoneInto Cavities in an Implant,’’ J. Arthroplasty, 6 [1] 51–58, 1991.
Rateitschak KH, Wolf HF. Color Atlas of Dental Medicine. Thieme Medical Publishers, 1995.
Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science. Academic Press, California, 1996;222-223.
R. E. Holmes, ‘‘Bone Regeneration Within a Coralline Hydroxyapatite Implant,’’ Plast. Reconstr. Surg., 63 [5] 626–633 ,1979.
R. S. Harland, C. Dubernet, J. P. Bennit and N. A. Peppas, "A modelof
dissolution-controlled, diffusional drug release from non-swellable
polymeric microspheres," J. Control. Rel., 7, 207-215, 1988.
S.F.Hulbert, J.C.Bokros, L.L.Hench,Wilson J,G.Heimke.T.Kokubo, Recent progress in glass-based materials for biomedical applications. The Centennial Memorial Issue of The Ceramic Society of Japan 99: 965-973, 1991.
Shi ZL, Chua PH, Neoh KG, Kang ET, Wang W. Bioactive titanium implant surfaces with bacterial inhibition and osteoblast function enhancement properties, 2008.
Silver FH. Biomaterials, medical devices, and tissue engineering: an integrated approach. Chapman & Hall, New York, 1994.
Siqueira JF, Lopes HP. Mechanisms of antimicrobial activity of calcium hydroxide: A critical review. Int Endod J 1999;32:361–369.
Soballe K. Hydroxyapatite ceramic coating for bone implant fixation. ACTA Orthopaed Scandin Supplem 1993;64:1-58.
S Saeed Hesaraki, Roghayeh Nemati, Cephalexin-Loaded Injectable Macroporous Calcium Phosphate Bone Cement, 2008.
Uwe Gbureck, Oliver Knappe, Liam M. Grover, Jake E. Barralet, Antimicrobial potency of alkali ion substituted calcium phosphate cements, Biomaterials, 2005.
Vasilev K, Cook J, Griesser HJ, Antibacterial surfaces for biomedical devices, 2009.
Verlaan JJ, Oner FC, Slootweg PJ, Verbout AJ, Dhert WJ Histologic changes after vertebroplasty. J Bone Joint Surg [Am] 86(A):1230-1238, 2004.
Volker Alta, Thorsten Bechert, Peter Steinr .ucke, Michael Wagener, Peter Seidel, Elvira Dingeldein, Eugen Domann, Reinhard Schnettler, An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement, Biomaterials, 2003.
Ying. Nanocrystalline apatites and composite prostheses incorporating them, and method for their production ,US patent 6013591, 2000.
Yong Wu, Joseph P. Zitelli, Kevor S. TenHuisen, Xiaojun Yu, Matthew R. Libera. Differential response of Staphylococci and osteoblasts to varying titanium surface roughness, 2010.
http://en.wikipedia.org/wiki/List_of_bones_of_the_human_skeleton
http://darkwing.uoregon.edu/~louiso/BNSTRUC.GIF
http://tw.myblog.yahoo.com/jw!J614c8mZBRZpLSMCwm16/article?mid=246
http://zh.wikipedia.org/zh-tw/%E9%87%91%E9%BB%83%E8%89%B2%E8%91%A1%E8%90%84%E7%90%83%E8%8F%8C
http://www.fda.gov.tw/content.aspx?site_content_sn=1937
Ratner (UW Today 1999-12-14)
http://www.washington.edu/news/archive/id/1797
Journal of Biomedical Materials Research Part B: Applied Biomaterials
林應銳,防霉與工業殺菌劑,初版,北京:科學出版社,4-55頁,1987
張炳龍,ROSS 組織學, 合記圖書出版社,147-158,1991
薛廣波,實用消毒學,初版,北京:人民軍醫出版社,15-78頁,1993
城天恩,防菌防霉劑手冊,初版,上海:上海技術文獻出版社,2-20頁,1993
薛廣波,滅菌、消毒、防腐、保藏,初版,北京:人民衛生出版社,2-66頁,1997
萬素英,食品防腐與防腐劑,初版,北京:中國輕工業出版社,22-45頁,1998
蔡文城,微生物學,第四版,台灣台北:藝軒圖書出版社,23-26頁,2002
梁智仁,“骨質疏鬆致骨折專治生物材料的研製與市場化”京港學術交流第五十四期,2002
季君暉、史維民,抗菌材料,初版,北京:化學工業出版社,8-14頁,2004
陳建文、蔡辰波,滅菌、消毒與抗菌技術—基礎‧生產‧應用,初版,北京:化學工業出版社,38-42頁,2004
林彥秀,雙咪唑陽離子結構離子液體在抗菌性能之研究,2009
傅佑璋,聚乳酸(PLA)及乳酸/羥基乙酸共聚合物(PLGA)於抗癌藥物傳輸系統之研究,2011
校內:2017-08-29公開