| 研究生: |
徐聰元 Hsu, Tsung-Yuan |
|---|---|
| 論文名稱: |
氧化銫鎢複合奈米粒子之製備與特性研究 Preparation and Characterization of Cesium Tungsten Oxide Composite Nanoparticles |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 氧化銫鎢 、鎢酸鈷 、溶熱合成法 、近紅外光光熱轉換 、對硝基苯酚 、觸媒 |
| 外文關鍵詞: | cesium tungsten oxide, cobalt tungstate, hydrothermal synthesis, NIR photothermal conversion, 4-nitrophenol, catalyst |
| 相關次數: | 點閱:79 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本研究係有關鎢酸鈷/氧化銫鎢(CoWO4/CsxWO3-H)複合奈米粒子之製備及觸媒應用,利用兩步驟溶熱法與及後續在600oC氫/氬(5/95)混合氣氛中的鍛燒,可成功製得鎢酸鈷/氧化銫鎢複合奈米粒子。由於兼具氧化銫鎢在近紅外光波段優異的光熱轉換特性及鎢酸鈷的觸媒特性,本研究將所得鎢酸鈷/氧化銫鎢複合奈米粒子作為具近紅外光與太陽光光熱增強性能之觸媒,用於對硝基苯酚之硼氫化鈉催化還原。探討對硝基苯酚濃度、觸媒使用量、及反應溫度對催化反應的影響,發現其擬一階速率常數隨著反應溫度與觸媒使用量增加而增加,但隨著對硝基苯酚濃度之增加而減少,得知其活化能為23.9 kJ/mol且反應為擴散控制。此外,在近紅外光或太陽光照射下,反應速率皆可因溶液溫度之上升而顯著提高,顯示所得觸媒擁有良好的光熱轉換能力,可藉照射太陽光而提高其性能,證實具有很高的應用潛力。
Abstract
This thesis concerns the preparation and catalytic application of cobalt tungstate/cesium tungsten oxide (CoWO4/CsxWO3-H) composite nanoparticles, which could be synthesized successfully via two-step solvothermal process and the followed calcination in H2/Ar (5/95) atmosphere at 600oC. Because they possessed the excellent NIR photothermal conversion property of cesium tungsten oxide and the catalytic properties of cobalt tungstate, the resulting CoWO4/CsxWO3-H composite nanoparticles were utilized as the catalyst with near-infrared (NIR) and sunlight photothermally enhanced performance for the catalytic reduction of 4-nitrophenol (4-NP) with sodium borohydride in this study. From the investigations on the effects of 4-NP concentration, catalyst amount, and reaction temperature, it was found that the corresponding pseudo-first-order rate constant increased with the increase of temperature and catalyst amount while decreased as the concentration of 4-NP increased. This revealed that the reaction had an activation energy of 23.9 kJ/mol and was diffusion-controlled. Furthermore, under NIR or sunlight irradiation, the reaction rate could be enhanced significantly owing to the increase of solution temperature. This revealed that the resulting catalyst possessed good photothermal conversion capability and its performance could be enhanced by the irradiation of sunlight. It was demonstrated to have great potential in practical application.
參考文獻
[1] F. Gu, Y. Cui, D. Han, S. Hong, M. Flytzani-Stephanopoulos, and Z. Wang, Atomically dispersed Pt (II) on WO3 for highly selective sensing and catalytic oxidation of triethylamine, Applied Catalysis B: Environmental, 117809, 2019.
[2] J. Fu, Q. Xu, J. Low, C. Jiang, and J. Yu, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst, Applied Catalysis B: Environmental, 243, 556–565, 2019.
[3] P. A. Shinde, A. C. Lokhande, A. M. Patil, and C. D. Lokhande, Facile synthesis of self-assembled WO3 nanorods for high-performance electrochemical capacitor, Journal of Alloys and Compounds, 770, 1130–1137, 2019.
[4] Y. X . Xue, Synthesis of nanowire bundle-like WO3-W18O49 heterostructures for highly sensitive NH3 sensor application, Journal of Hazardous Materials, 353, 290–299, 2018.
[5] Y. Chen, X. Zeng, Y. Zhou, R. Li, H. Yao, X. Cao, and P. Jin, Core-shell structured CsxWO3@ZnO with excellent stability and high performance on near-infrared shielding, Ceramics International, 44(3), 2738–2744, 2018.
[6] T. Hirano, S. Nakakura, F. G. Rinaldi, E. Tanabe, W. N. Wang, and T. Ogi, Synthesis of highly crystalline hexagonal cesium tungsten bronze nanoparticles by flame-assisted spray pyrolysis, Advanced Powder Technology, 29(10), 2512–2520, 2018.
[7] X. Zeng, Y. Zhou, S. Ji, H. Luo, H. Yao, X. Huang, and P. Jin, P. The preparation of a high performance near-infrared shielding CsxWO3/SiO2 composite resin coating and research on its optical stability under ultraviolet illumination, Journal of Materials Chemistry C, 3(31), 8050–8060, 2015.
[8] J. Liu, B. Chen, C. Fan, F. Shi, S. Ran, J. Yang, and S. H. Liu, Controllable synthesis of small size CsxWO3 nanorods as transparent heat insulation film additives, CrystEngComm, 20(11), 1509–1519, 2018.
[9] S. Ivanov, Multiferroic complex metal oxides: Main features of preparation, structure, and properties, In Science and Technology of Atomic, Molecular, Condensed Matter & Biological Systems (Vol. 2, pp. 163–238), Elsevier, 2012.
[10] H. Takeda, and K. Adachi, Near infrared absorption of tungsten oxide nanoparticle dispersions, Journal of The American Ceramic Society, 90(12), 4059–4061, 2007.
[11] M. Chen, Y. Zou, L. Wu, Q. Pan, D. Yang, H. Hu, and B. Sun, Solvothermal synthesis of high‐quality all‐inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire, Advanced Functional Materials, 27(23), 1701121, 2017.
[12] C. Guo, S. Yin, M. Yan, and T. Sato, Facile synthesis of homogeneous CsxWO3 nanorods with excellent low-emissivity and NIR shielding property by a water controlled-release process, Journal of Materials Chemistry, 21(13), 5099–5105, 2011.
[13] L. Peng, W. Chen, B. Su, A. Yu, and X. Jiang, CsxWO3 nanosheet-coated cotton fabric with multiple functions: UV/NIR shielding and full-spectrum-responsive self-cleaning, Applied Surface Science, 475, 325–333, 2019.
[14] N. Tahmasebi, and S. Madmoli, Facile synthesis of a WOx/CsyWO3 heterostructured composite as a visible light photocatalyst, RSC Advances, 8(13), 7014–7021, 2018.
[15] Z. Yu, Y. Yao, J. Yao, L. Zhang, Z. Chen, Y. Gao, and H. Luo, Transparent wood containing CsxWO3 nanoparticles for heat-shielding window applications, Journal of Materials Chemistry A., 5(13), 6019–6024, 2017.
[16] W. Guo, C. Guo, N. Zheng, T. Sun, and S. Liu, CsxWO3 nanorods coated with polyelectrolyte multilayers as a multifunctional nanomaterial for bimodal imaging‐guided photothermal/photodynamic cancer treatment, Advanced Materials, 29(4), 1604157, 2017.
[17] Y. Li, J. Li, G. Zhang, K. Wang, and X. Wu, Selective photocatalytic oxidation of low concentration methane over graphitic carbon nitride-decorated tungsten bronze cesium, ACS Sustainable Chemistry & Engineering, 7(4), 4382–4389, 2019.
[18] R. C. Pullar, S. Farrah, and N. M. Alford, MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics, Journal of the European Ceramic Society, 27(2-3), 1059–1063, 2007.
[19] M. Nikl, P. Bohacek, E. Mihokova, M. Kobayashi, M. Ishii, Y. Usuki, ... and M. Bacci, Excitonic emission of scheelite tungstates AWO4 (A= Pb, Ca, Ba, Sr), Journal of Luminescence, 87, 1136–1139, 2000.
[20] J. Ke, M. A. Younis, Y. Kong, H. Zhou, J. Liu, L. Lei, and Y. Hou, Nanostructured ternary metal tungstate-based photocatalysts for environmental purification and solar water splitting: a review, Nano-Micro Letters, 10(4), 69, 2018.
[21] E. M. Samsudin, and S. B. A. Hamid, Effect of band gap engineering in anionic-doped TiO2 photocatalyst, Applied Surface Science, 391, 326–336, 2017.
[22] M. Vosoughifar, Preparation, characterization, and morphological control of MnWO4 nanoparticles through novel method and its photocatalyst application, Journal of Materials Science: Materials in Electronics, 28(2), 2135–2140, 2017.
[23] R. Karthiga, B. Kavitha, M. Rajarajan, and A. Suganthi, Photocatalytic and antimicrobial activity of NiWO4 nanoparticles stabilized by the plant extract, Materials Science in Semiconductor Processing, 40, 123–129, 2015.
[24] L. Zhen, W. S. Wang, C. Y. Xu, W. Z. Shao, and L. C. Qin, A facile hydrothermal route to the large-scale synthesis of CoWO4 nanorods, Materials Letters, 62(10–11), 1740–1742, 2008.
[25] B. Sun, H. Li, L. Wei, and P. Chen, Hydrothermal synthesis and resistive switching behaviour of WO3/CoWO4 core–shell nanowires, CrystEngComm, 16(42), 9891–9895, 2014.
[26] T. V. Gavrilović, D. J. Jovanović, and M. D. Dramićanin, Synthesis of multifunctional inorganic materials: from micrometer to nanometer dimensions, In Nanomaterials for Green Energy (B. A. Bhanvase, V. Pawade, S. J. Dhoble, S. H. Sonawane, M. Ashokkumar), pp. 55–81, Elsevier, United Kingdom, 2018.
[27] S. Thongtem, S. Wannapop, and T. Thongtem, Characterization of CoWO4 nano-particles produced using the spray pyrolysis, Ceramics International, 35(5), 2087–2091, 2009.
[28] S. Shanmugapriya, S. Surendran, V. D. Nithya, P. Saravanan, and R. K. Selvan, Temperature dependent electrical and magnetic properties of CoWO4 nanoparticles synthesized by sonochemical method, Materials Science and Engineering: B, 214, 57–67, 2016.
[29] X. Xu, J. Gao, G. Huang, H. Qiu, Z. Wang, J. Wu, and F. Xing, Fabrication of CoWO4@NiWO4 nanocomposites with good supercapacitve performances, Electrochimica Acta, 174, 837–845, 2015.
[30] M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, and T. Tsuji, Microwave‐assisted synthesis of metallic nanostructures in solution, Chemistry–A European Journal, 11(2), 440–452, 2005.
[31] R. D. Kumar, and S. Karuppuchamy, Microwave mediated synthesis of nanostructured Co-WO3 and CoWO4 for supercapacitor applications, Journal of Alloys and Compounds, 674, 384–391, 2016.
[32] G. He, J. Li, W. Li, B. Li, N. Noor, K. Xu, and I. P. Parkin, One pot synthesis of nickel foam supported self-assembly of NiWO4 and CoWO4 nanostructures that act as high performance electrochemical capacitor electrodes, Journal of Materials Chemistry A, 3(27), 14272–14278, 2015.
[33] M. Zhang, H. Fan, N. Zhao, H. Peng, X. Ren, W. Wang, and P. Wu, 3D hierarchical CoWO4/Co3O4 nanowire arrays for asymmetric supercapacitors with high energy density, Chemical Engineering Journal, 347, 291–300, 2018.
[34] M. Sivakumar, R. Madhu, S. M. Chen, V. Veeramani, A. Manikandan, W. H. Hung, and Y. L. Chueh, Low-temperature chemical synthesis of CoWO4 nanospheres for sensitive nonenzymatic glucose sensor, The Journal of Physical Chemistry C, 120(30), 17024–17028, 2016.
[35] H. Zhang, W. Tian, Y. Li, H. Sun, M. O. Tadé, and S. Wang, Heterostructured WO3@CoWO4 bilayer nanosheets for enhanced visible-light photo, electro and photoelectro-chemical oxidation of water, Journal of Materials Chemistry A, 6(15), 6265–6272, 2018.
[36] F. Ahmadi, M. Rahimi-Nasrabadi, A. Fosooni, and M. Daneshmand, Synthesis and application of CoWO4 nanoparticles for degradation of methyl orange, Journal of Materials Science: Materials in Electronics, 27(9), 9514–9519, 2016.
[37] M. J. S. Mohamed, S. Shenoy, and D. K. Bhat, Novel NRGO-CoWO4-Fe2O3 nanocomposite as an efficient catalyst for dye degradation and reduction of 4-nitrophenol, Materials Chemistry and Physics, 208, 112–122, 2018.
[38] J. Li, X. Wang, G. Zhao, C. Chen, Z. Chai, A. Alsaedi, and X. Wang, Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chemical Society Reviews, 47(7), 2322-2356, 2018.
[39] Y. Z. Chen, R. Zhang, L. Jiao, and H. L. Jiang, Metal–organic framework-derived porous materials for catalysis. Coordination Chemistry Reviews, 362, 1-23, 2018.
[40] E. T. Kho, T. H. Tan, E. Lovell, R. J. Wong, J. Scott, and R. Amal, A review on photo-thermal catalytic conversion of carbon dioxide, Green Energy & Environment, 2(3), 204–217, 2017.
[41] J. Wang, Y. Li, L. Deng, N. Wei, Y. Weng, S. Dong, and T. Wu, High‐performance photothermal conversion of narrow‐bandgap Ti2O3 nanoparticles, Advanced Materials, 29(3), 1603730, 2017.
[42] M. Gao, L. Zhu, C. K. Peh, and G. W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production, Energy & Environmental Science, 12(3), 841–864, 2019.
[43] D. Zhao, H. Duan, S. Yu, Y. Zhang, J. He, X. Quan, and T. Deng, Enhancing localized evaporation through separated light absorbing centers and scattering centers, Scientific Reports, 5, 17276, 2015.
[44] M. S. Zielinski, J. W. Choi, T. La Grange, M. Modestino, S. M. H. Hashemi, Y. Pu, and D. saltis, Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation, Nano Letters, 16(4), 2159–2167, 2016.
[45] X. Yu, J. Bi, G. Yang, H. Tao, and S. Yang, Synergistic effect induced high photothermal performance of Au nanorod@Cu7S4 yolk–shell nanooctahedron particles, The Journal of Physical Chemistry C, 120(43), 24533–24541, 2016.
[46] Z. Li, H. Huang, S. Tang, Y. Li, X. F. Yu, H. Wang, and P. K. Chu, Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy, Biomaterials, 74, 144–154, 2016.
[47] J. Fang, Q. Liu, W. Zhang, J. Gu, Y. Su, H. Su, and D. Zhang, Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation, Journal of Materials Chemistry A, 5(34), 17817–17821, 2017.
[48] M. Zhu, Y. Li, F. Chen, X. Zhu, J. Dai, Y. Li, and E. Hitz, Plasmonic wood for high‐efficiency solar steam generation, Advanced Energy Materials, 8(4), 1701028, 2018.
[49] X. Li, R. Lin, G. Ni, N. Xu, X. Hu, B. Zhu, and J. Zhu, Three-dimensional artificial transpiration for efficient solar waste-water treatment, National Science Review, 5(1), 70–77, 2017.
[50] L. Shi, Y. Wang, L. Zhang, and P. Wang, Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation, Journal of Materials Chemistry A, 5(31), 16212–16219, 2017.
[51] W. Xu, X. Hu, S. Zhuang, Y. Wang, X. Li, L. Zhou, and J. Zhu, Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination, Advanced Energy Materials, 8(14), 1702884, 2018.
[52] C. Chen, Y. Li, J. Song, Z. Yang, Y. Kuang, E. Hitz, and B. Yang, Highly flexible and efficient solar steam generation device, Advanced Materials, 29(30), 1701756, 2017.
[53] H. Gao, Y. Chen, H. Li, F. Zhang, and G. Tian, Hierarchical Cu7S4-Cu9S8 heterostructure hollow cubes for photothermal aerobic oxidation of amines, Chemical Engineering Journal, 363, 247–258, 2019.
[54] C. Song, T. Li, W. Guo, Y. Gao, C. Yang, Q. Zhang, and C. Guo, Hydrophobic Cu12Sb4S13-deposited photothermal film for interfacial water evaporation and thermal antibacterial activity, New Journal of Chemistry, 42(5), 3175–3179, 2018.
[55] M. Ye, J. Jia, Z. Wu, C. Qian, R. Chen, P. G. O'Brien, and G. A. Ozin, Synthesis of black TiOx nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation, Advanced Energy Materials, 7(4), 1601811, 2017.
[56] Y. Zhou, J. Tan, D. Chong, X. Wan, and J. Zhang, Rapid near‐infrared light responsive shape memory polymer hybrids and novel chiral actuators based on photothermal W18O49 nanowires, Advanced Functional Materials, 1901202, 2019.
[57] D. Ding, W. Guo, C. Guo, J. Sun, N. Zheng, F. Wang, and S. Liu, MoO3−x quantum dots for photoacoustic imaging guided photothermal/photodynamic cancer treatment, Nanoscale, 9(5), 2020–2029, 2017.
[58] W. Xu, Z. Meng, N. Yu, Z. Chen, B. Sun, X. Jiang, and M. Zhu, PEGylated CsxWO3 nanorods as an efficient and stable 915 nm-laser-driven photothermal agent against cancer cells, RSC Advances, 5(10), 7074–7082, 2015.
[59] X. Wang, Y. Ma, X. Sheng, Y. Wang, and H. Xu, Ultrathin polypyrrole nanosheets via space-confined synthesis for efficient photothermal therapy in the second near-infrared window, Nano letters, 18(4), 2217–2225, 2018.
[60] B. Poinard, S. Z. Y. Neo, E. L. L. Yeo, H. P. S. Heng, K. G. Neoh, and J. C. Y. Kah, Polydopamine nanoparticles enhance drug release for combined photodynamic and photothermal therapy, ACS Applied Materials & Interfaces, 10(25), 21125–21136, 2018.
[61] B. Xia, B. Wang, J. Shi, Y. Zhang, Q. Zhang, Z. Chen, and J. Li, Photothermal and biodegradable polyaniline/porous silicon hybrid nanocomposites as drug carriers for combined chemo-photothermal therapy of cancer, Acta Biomaterialia, 51, 197–208, 2017.
[62] C. C. Yeh, and D. H. Chen, Ni/reduced graphene oxide nanocomposite as a magnetically recoverable catalyst with near infrared photothermally enhanced activity, Applied Catalysis B: Environmental, 150, 298–304, 2014.
[63] Q. Yang, Q. Xu, S. H. Yu, and H. L. Jiang, Pd nanocubes@ZIF‐8: integration of plasmon‐driven photothermal conversion with a metal–organic framework for efficient and selective catalysis, Angewandte Chemie International Edition, 55(11), 3685–3689, 2016.
[64] F. Liu, L. Song, S. Ouyang, and H. Xu, Cu-Based mixed metal oxides for an efficient photothermal catalysis of the water-gas shift reaction, Catalysis Science & Technology, 9(9), 2125–2131, 2019.
[65] J. Wang, G. Zhang, and P. Zhang, Graphene-assisted photothermal effect on promoting catalytic activity of layered MnO2 for gaseous formaldehyde oxidation, Applied Catalysis B: Environmental, 239, 77–85, 2018.
[66] L. Wang, Y. Wang, Y. Cheng, Z. Liu, Q. Guo, M. N. Ha, and Z. Zhao, Hydrogen-treated mesoporous WO3 as a reducing agent of CO2 to fuels (CH4 and CH3OH) with enhanced photothermal catalytic performance, Journal of Materials Chemistry A, 4(14), 5314–5322, 2016.
[67] F. Wang, Y. Huang, Z. Chai, M. Zeng, Q. Li, Y. Wang, and D. Xu, Photothermal-enhanced catalysis in core–shell plasmonic hierarchical Cu7S4 microsphere@ zeolitic imidazole framework-8, Chemical Science, 7(12), 6887–6893, 2016.
[68] M. Guo, J. He, Y. Li, S. Ma, and X. Sun, One-step synthesis of hollow porous gold nanoparticles with tunable particle size for the reduction of 4-nitrophenol, Journal of Hazardous Materials, 310, 89–97, 2016.
[69] J. G. You, C. Shanmugam, Y. W. Liu, C. J. Yu, and W. L. Tseng, Boosting catalytic activity of metal nanoparticles for 4-nitrophenol reduction: Modification of metal naoparticles with poly (diallyldimethylammonium chloride), Journal of Hazardous Materials, 324, 420–427, 2017.
[70] Z. Dong, X. Le, C. Dong, W. Zhang, X. Li, and J. Ma, Ni@ Pd core–shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol, Applied Catalysis B: Environmental, 162, 372–380, 2015.
[71] E. A. Einarsrud, and T. Grande, 1D oxide nanostructures from chemical solutions, Chemical Society Reviews, 43(7), 2187–2199, 2014.
[72] J. O. Eckert Jr, C. C. Hung‐Houston, B. L. Gersten, M. M. Lencka, and R. E. Riman, Kinetics and mechanisms of hydrothermal synthesis of barium titanate, Journal of the American Ceramic Society, 79(11), 2929–2939, 1996.
[73] G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Annalen Der Physic, 330(3), 377–445, 1908.
[74] A. Zaleska-Medynska, M. Marchelek, M. Diak, and E. Grabowska, Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties, Advances in Colloid and Interface Science, 229, 80–107, 2016.
[75] D. Jaque, L. M. Maestro, B. Del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, and J. G. Sole, Nanoparticles for photothermal therapies, Nanoscale, 6(16), 9494–9530, 2014.
[76] S. Nakakura, A. F. Arif, K. Machida, K. Adachi, and T. Ogi, Cationic defect engineering for controlling the infrared absorption of hexagonal cesium tungsten bronze nanoparticles, Inorganic Chemistry, 2019.
[77] W. Min, X. S. Xie, and B. Bagchi, Two-dimensional reaction free energy surfaces of catalytic reaction: Effects of protein conformational dynamics on enzyme catalysis, The Journal of Physical Chemistry B, 112(2), 454–466, 2008.
[78] 林郁人,六硼化鑭/二氧化矽/金複合奈米粒子之製備及其光熱轉換與催化特性, 國立成功大學化學工程學系碩士論文, 2010.
[79] H. Scott Fogler, Elements of chemical reaction engineering, Pearson Education Inc., 2008.
[80] J. R. Chiou, B. H. Lai, K. C. Hsu, and D. H. Chen, One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction, Journal of Hazardous Materials, 248, 394–400, 2013.
[81] 葉俊杰, 鎳奈米粒子/還原氧化石墨烯奈米複合材料的製備與觸媒特性, 國立成功大學化學工程學系碩士論文, 2014.
[82] 邱昭榮, 銀/氧化鐵複合奈米粒子之綠色合成及其觸媒特性研究, 國立成功大學化學工程學系碩士論文, 2012.