| 研究生: |
張庭豪 Chang, Ting-Hao |
|---|---|
| 論文名稱: |
內置應力釋放層於氮化銦鎵藍光發光二極體之影響與
研究 Investigation of the Effect of Blue InGaN Light-Emitting Diodes with Different Insertion Strain-Release Layer |
| 指導教授: |
張守進
Chang, Shoou-Jinn 陳志方 Chen, Jone-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 氮化銦鎵 、應力釋放層 |
| 外文關鍵詞: | LED, Strain-Release Layer |
| 相關次數: | 點閱:52 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
量子侷限史塔克效應(quantum confined-Stark effect, QCSE),會使得LED的發光效率下降。在本論文,為了減少多重量子井內的殘餘應力,我們製作了三種不同的應力釋放結構之發光二極體。利用電致發光(electroluminescence, EL)來測量其發光波長來判別其應力之大小。發光波長的藍移與其量子侷限史塔克效應是有相關的,樣本 A(應力釋放層結構為n型氮化鎵/未參雜氮化銦鎵 短周期超晶格), 樣本 B (應力釋放層結構為,低溫成長 n型氮化鎵) 以及樣本 C (應力釋放層結構為P型氮化鎵/P型氮化銦鎵 短周期超晶格)屏蔽效應之藍移量分別為 0.39 奈米,0.32奈米以及0.54 奈米。LED B之外部量子效率是三者中最大的,在注入電流 20毫安培之下,其值為10.3 毫瓦。然而,樣本B之插座效率下滑(wall plug efficiency droop)因其較高的接面溫度表現最差。並且我們可以發現接面溫度是由其串聯電阻所主導,而其較高的串聯阻值則是與設計之應力釋放層有關。
Quantum confine Stark effect (QCSE) would reduce the efficiency of LEDs. To reduce the residual strain in the MQWs of LEDs, we fabricate three different strain-released LEDs. We use the electroluminescence (EL) to measure the emission wavelength and determine the strain of LEDs. It is well known that the QCSE is relative to the blueshift of emission wavelength. The blueshift of screening effect for LED A (Strain-released layer, n-GaN/u-InGaN SPS), LED B (Strain-released layer, LT n-GaN) and LED C (Strain-released layer, p-GaN/p-InGaN SPS) are 0.39 nm, 0.32 nm and 0.54 nm, respectively. External quantum efficiency of LED B is the largest, 10.3 mw with injection current 20 mA. However, the wall plug efficiency (WPE) droop of LED B is the smallest, which is attributed to its high junction temperature. Thus, the factor dominates in junction temperature is series resistance. Furthermore, the high series resistance would be attributed to the strain-released structure of LEDs.
chapter1
[1] E. Fred Schubert and Jong Kyu Kim, “Solid-State Light Sources Getting Smart”, Science, vol. 308, pp. 1274-1278 (2005).
[2] Xiao-Hui Huang, Jian-Ping Liu, Ya-Ying Fan, Jun-Jie Kong, Hui Yang, and Huai-Bing Wang, “Effect of Patterned Sapphire Substrate Shape on Light Output Power of GaN-Based LEDs”, IEEE Photonics Technol. Lett., vol. 23, no. 14 (2011).
[3] Hui Xu, “Fabrication and electrical/optical characterization of bulk GaB-Based schottky diodes”, auburn university (2009).
[4] Michael R. Krames, Member, IEEE, Oleg B. Shchekin, Regina Mueller-Mach, Gerd O. Mueller, Ling Zhou, Gerard Harbers, and M. George Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting”, J. Disp. Technol., vol. 3, no. 2 (2007).
[5] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche & K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes”, Nature, vol. 406, pp. 865-868 (2000).
[6] V. Fiorentini, F. Bernardini, O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-Vnitride alloy heterostructures”, Appl. Phys. Lett., 80, 7 (2002).
[7] Kenneth J. Vampola, Michael Iza, Stacia Keller, Steven P. DenBaars, and Shuji Nakamura, “Measurement of electron overflow in 450 nm InGaN light-emitting diodestructures”, Appl. Phys. Lett., 94, 061116 (2009).
[8] Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm et
9
al., “Auger recombination in InGaN measured by photoluminescence”, Appl. Phys. Lett., 91, 141101 (2007).
[9] N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, Y. S. Lelikov et al., “Defect-related tunneling mechanism of efficiency droop in III-nitride light emitting diodes”, Appl. Phys. Lett., 96, 133502 (2010).
[10] Min-Ho Kim, Martin F. Schubert, Qi Dai, Jong Kyu Kim, E. Fred Schubert et al., “Origin of efficiency droop in GaN-based light-emitting diodes”, Appl. Phys. Lett., 91, 183507 (2007).
[11] Min-Ho Kim, Wonseok Lee, Di Zhu, Martin F. Schubert, Jong Kyu Kim, E. Fred Schubert, and Yongjo Park, “Partial Polarization Matching in GaInN-Based Multiple Quantum Well Blue LEDs Using Ternary GaInN Barriers for a Reduced Efficiency Droop”, IEEE J. Sel. Top. Quantum Electron., (2009).
chapter2
[1] V. Selvamanickam *, H. G. Lee, Y. Li, X. Xiong, Y. Qiao, J. Reeves, Y. Xie, A. Knoll, K. Lenseth, “Fabrication of 100 A class, 1 m long coated conductor tapes by metal organic chemical vapor deposition and pulsed laser deposition”, Physica C, 392–396, 859–862 (2003).
[2] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes”, Jpn. J. Appl. Phys., 35, pp. L74-L76 (1997).
[3] Z. Fan, S. N. Mohammad, O. Aktas, A. E. Botchkarev, A. Salvador and H. Morkoc, “Suppression of leakage currents and their effect on the electrical performance of AlGaN/GaN modulation doped field‐effect transistors”, Appl. Phys. Lett., 69, 1229 (1996).
[4] S. Nakamura, T. Mukai, M. Senoh and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films”, Jpn. J. Appl. Phys., 31, pp. L139-L141 (1992).
[5] H. Amano, M. Kito, K. Hiramatsu, N. Sawaki and I. Akasaki, “p-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation”, Jpn. J. Appl. Phys., 28, 12, L2112 (1989).
[6] H. P. Maruska and J. J. Tietjen, “The preparation and properties of vapor-deposited single-crystal-line GaN”, Appl. Phys. Lett., 15, 327 (1969).
[7] M. E. Lin, Z. F. Fan, Z. Ma, L. H. Allen, and H. Morkoc, “Reactive ion etching of GaN using BCl3”, Appl. Phys. Lett., 64, 887 (1994).
21
[8] E. Sillero, F. Calle, M. A . Sanchez-Garcia, “GaN reactive ion etching using SiCl4:Ar:SF6 Chemistry”, J. Mater. Sci.-Mater. Electron., 16, 7 (2005).
[9] G. F. Mclane, L. Casas, S. J. Pearton, and C. R. Abernathy, “High etch rates of GaN with magnetron reactive ion etching in BCl3 plasmas”, Appl. Phys. Lett., 66, 3328 (1995).
[10] A. T. Ping, I. Adesida, and M. Asif Khan, “Study of chemically assisted ion beam etching of GaN using HCl gas”,Appl. Phys. Lett., 67, 1250 (1995).
[11] L. Zhang, J. Ramer, J. Brown, K. Zheng, L. F. Lester, and S. D. Hersee, “Electron cyclotron resonance etching characteristics of GaN in SiCl4/Ar”, Appl. Phys. Lett., 68, 367 (1996).
[12] D. S. Wuu, C. R. Chung and Y. H. Liu, R. H. Horng and S. H. Huang “Deep etch of GaP using high-density plasma for light-emitting diode applications”, J. Vac. Sci. Technol. B, 20, 902 (2002).
[13] S. J. Pearton, C. R. Abernathy, F. Ren and J. R. Lothian, “Dry and wet etching characteristics of InN, AlN, and GaN deposited by electron cyclotron resonance metalorganic molecular beam epitaxy”, J. Vac. Sci. Technol. A, 11, 1772 (1993).
[14] S. A. Smith, C. A. Wolden, M. D. Bremser, A. D. Hanser, and R. F. Davis, “High rate and selective etching of GaN, AlGaN, and AlN using an inductively coupled plasma”, Appl. Phys. Lett., 71, 3631 (1997).
[15] R. J. Shul, G. B. McClellan, S. A. Casalnuovo, D. J. Rieger, “Inductively coupled plasma etching of GaN”, Appl. Phys. Lett., 69, 1119 (1996)
22
[16] D. S. Wuu, C. R. Chung, Y. H. Liu, R. H. Horng and S. H. Huang, “Deep etch of GaP using high-density plasma for light-emitting diode applications”, J. Vac. Sci. Technol. B, 20, 3 (2002).
[17] Y. Xi and E. F. Schubert, “Junction temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method”, Appl. Phys. Lett., 85, 12 (2004).
[18] Y. J. Lee, C. J. Lee, C. H. Chen, “Determination of Junction Temperature in InGaN and AlGaInP Light-Emitting Diodes”, IEEE J. Quantum Electron., 46, 10 (2010).
[19] W. B. Joyce and R. W. Dixon, “Thermal resistance of heterostructure lasers”, J. Appl. Phys., 46, 2 (1975).
chapter3
[1] J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang, and G. C. Chi, ” Low-Operation Voltage of InGaN/GaN Light-Emitting Diodes With Si-Doped In0.3Ga0.7N/GaN Short-Period Superlattice Tunneling Contact Layer”, IEEE Electron Device Lett., vol. 22, NO. 10 (2001).
[2]T. H. Chiang, Y. Z. Chiou, S. J. Chang, T. K. Lin and S. P. Chang, “Effect of Silicon Doped Quantum Barriers on Nitride-Based Light Emitting Diodes”, J. Electrochem. Soc., 158, H836-H839 (2011).
[3] Chi Sun Kim, Hyung Gu Kim, Chang-Hee Hong, and Hyung Koun Cho, “Effect of compressive strain relaxation in GaN blue light-emitting diodes with variation of n+-GaN thickness on its device performance”, Appl. Phys. Lett., 87, 013502 (2005).
[4] Chih-Feng Lu, Chi-Feng Huang, Yung-Sheng Chen, and C. C. Yang, “Dependence of spectral behavior in an InGaN/GaN quantum-well light emitting diode on the prestrained barrier thickness”, J. Appl. Phys., 104, 043108 (2008).
[5] Bo HyunKong , HyungKoun Cho, MiYang Kim , RakJun Choi , BaeKyun Kim, “Strain variationin p-GaN bydifferent spacer layers in the light emitting diodes and their microstructural and emission behaviors”, J. Cryst. Growth, 312, 2128-2132 (2010).
[6] Y. K. Su,1, J. J. Chen, C. L. Lin, C. C. Kao and C. T. Lin, “Effect of period of the electron emitter MQW structure on the improvement of characteristics in nitride-based LEDs”, Phys. Status Solidi, No. 7–8,
55
2162–2164 (2010).
[7] Yu-Hsuan Sun, Yun-Wei Cheng, Szu-Chieh Wang, Ying-Yuan Huang, Chun-Hsiang Chang, Sheng-Chieh Yang, Liang-Yi Chen, Min-Yung Ke, Chi-Kang Li, Yuh-Renn Wu and JianJang Huang, “Optical Properties of the Partially Strain Relaxed InGaN/GaN Light-Emitting Diodes Induced by p-Type GaN Surface Texturing”, IEEE Electron Device Lett., vol. 32, no. 2 (2011).
[8] Min-Ho Kim, Wonseok Lee, Di Zhu, Martin F. Schubert, Jong Kyu Kim, E. Fred Schubert, and Yongjo Park, “Partial Polarization Matching in GaInN-Based Multiple Quantum Well Blue LEDs Using Ternary GaInN Barriers for a Reduced Efficiency Droop” IEEE J. Sel. Top. Quantum Electron., 6 (2009).
[9] Dong-Yul Lee, Sang-Heon Han, Dong-Ju Lee, Jeong Wook Lee, Dong-Joon Kim et al., “Effect of an electron blocking layer on the piezoelectric field in InGaN/GaN multiple quantum well light-emitting diodes”, Appl. Phys. Lett., 100, 041119 (2012).
[10] S. P. Chang, C. H. Wang, C. H. Chiu, J. C. Li, Y. S. Lu et al., “Characteristics of efficiency droop in GaN-based light emitting diodes with an insertion layer between the multiple quantum wells and n-GaN layer”, Appl. Phys. Lett., 97, 251114 (2010).
[11] Ya-Ju Lee, Ching-Hua Chiu, Chih Chun Ke, Po Chun Lin, Tien-Chang Lu, Hao-Chung Kuo and Shing-Chung Wang, “Study of the Excitation Power Dependent Internal Quantum Efficiency in InGaN/GaN LEDs Grown on Patterned Sapphire Substrate”, IEEE J. Sel. Top. Quantum Electron., vol. 15, no. 4 (2009).
56
[12] F. Akyol, D. N. Nath, S. Krishnamoorthy, P. S. Park, and S. Rajan, “Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes”, Appl. Phys. Lett., 100, 111118 (2012).
[13] Min-Ho Kim, Martin F. Schubert, Qi Dai, JongmKyu Kim, and E. Fred Schubert, Joachim Piprek,Yongjo Park, “Origin of efficiency droop in GaN-based light-emitting diodes”, Appl. Phys. Lett., 91, 183507 (2007).
[14] Jae-Hyun Ryou, P. Douglas Yoder, Jianping Liu, Zachary Lochner, Hyunsoo Kim, Suk Choi, Hee Jin Kim, and Russell D. Dupuis, “Control of Quantum-Confined Stark Effect in InGaN-Based Quantum Wells”, IEEE J. Sel. Top. QuantumElectron., vol. 15, no. 4 (2009).
[15] Ya-Ju Lee, Chia-Jung Lee, and Chih-Hao Chen, “Determination of Junction Temperature in InGaN and AlGaInP Light-Emitting Diodes”, IEEE IEEE J. Sel. Top. QuantumElectron., vol. 46, no. 10 (2010).
[16] Y. Varshni, “Temperature Dependence of the Energy Gap in Semiconductors ” , Physica, vol. 34, pp. 149-154 (1967).
chapter4
[1] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo,,and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates”, IEEE Photon. Technol. Lett., vol. 18, no. 10 (2006).
[2] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power InGaN ultraviolet light emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys., vol. 40, pp. L583–L585 (2001).
[3] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys., vol. 41, pp. L1431–L1433 (2002).