| 研究生: |
林柏君 Lin, Po-Chun |
|---|---|
| 論文名稱: |
電腦輔助腰椎之有限元素分析 Computed Aided Finite Element Analysis of Lumbar Spine |
| 指導教授: |
胡宣德
Hu, Hsuan-Teh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 有限元素 、腰椎 |
| 外文關鍵詞: | finite element, lumbar spine |
| 相關次數: | 點閱:97 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當今的年代,電腦運算處理速度的大力提昇,結合有限元素法的軟體,使得生物力學有顯著突破,目前文獻建立的整體腰椎模型幾乎從缺,是故,此研究主要在建立出腰椎的有限元素模型,以及基本的生物力學研究。
本研究將骨科教學用的腰椎樣本模型,藉由電腦斷層掃描,輔以醫學影像處理軟體3D-DOCTOR,建立出整體腰椎段(L1~L5)脊椎骨的三維表面模型,並以有限元素前處理軟體MSC.PATRAN,建立出整體的腰椎有限元素模型,包括椎體、椎間盤等,續加上小面關節的接觸作用及基本和自然邊界條件,最後給予有限元素分析軟體ABAQUS進行有限元素分析。
基本的生物力學分析,是由三種不同的模擬及五種不同的運動行為所組成,包括纖維組織的材料性質、小面關節的接觸摩擦性質、有無韌帶、正常站立姿勢、彎曲、伸展、側彎和扭轉運動。
Nowadays, biomechanics has made a significant breakthrough under the enhancement of increasing speed of computers, coupled with use of powerful finite element software. In current literatures, there are few articles about the topic of a whole lumbar spine model (L1~L5), this study builds a finite element model of the whole lumbar spine and makes basic research on biomechanics.
This study first obtained a 3D surface model of whole lumbar spine (L1~L5) through use of medical image processing program 3D-DOCTOR, based on the slices from scanning of the practice specimen of lumbar spine. With the preprocessing program MSC.PATRAN, and inclusion of both essential and natural boundary conditions, loading condition causing from the contact effect of facet joints, a final finite element model built to submit to analysis code ABAQUS.
The basic biomechanical analysis of this study was composed of three simulations with five motion behavior including flexion, extension, left and right lateral bending and axial torsion, and with each case under the considerations of different material properties of fiber tissue, contacting frictional property of facet joints and effect of ligaments.
Adams, M. A., Hutton, W. C., The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces, The Journal of Bone and Joint Surgery, Vol. 62-B, No. 3, pp. 368-362, 1980
Baroud, G., Nemes, J., Heini, P., and Steffen, T., Load shift of the intervertebral disc after a vertebroplasty: a finite-element study, European Spine Journal, Vol. 12, No. 4, pp. 421-426, 2003
Campbell-Kyureghyan, N. H., Computational analysis of the time-dependent biomechanical behavior of the lumbar spine, Ph.D. thesis, Department of Industrial and Systems Engineering, The Ohio State University, Ohio, U.S.A., 2004
Chaffin, D. B., Computerized biomechanical models- Development of a use in studying gross body actions, J. Biomech., Vol. 2, pp.429-441, 1969
Cheung, J. T.-M., Zhang, M., Chow, and D. H.-K., Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study, Clinical Biomechanics, Vol. 18, pp. 790–799, 2003
Cook, R. D., Malkus, D. S., Plesha, M. E., Witt, R. J., Concepts and applications of finite element analysis, fourth edition, John Wiley & Sons, New York, 2002
Denozière, G., Numerical modeling of a ligamentous lumbar motion segment, M.S. thesis, Department of Mechanical Engineering, Georgia Institute of Technology, Georgia, U.S.A., 2004
Glema, A., Lodygowski, T., Kakol, W., Wierszycki, M., and Ogurkowska, M. B., Modeling of intervertebral discs in the numerical analysis of spinal segment, ECCOMAS, pp. 24-28, 2004
Goel, V. K., Kim, Y. E., Lim, T. H., and Weinstein, J. N., An analytical investigation of spinal instrumentation, Spine, Vol. 13, pp. 1003-1011, 1988
Goel, V. K., Kong, W., Han, J. S., Weinstein, J. N., and Gilbertson, L. G., A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles, Spine, Vol. 18, pp. 1591-1541, 1993
Goel, V. K., Monroe, M. S., Gilbertson, L. G., and Brinckmann, P., Interlaminar shear stress and laminae separation in a disc, Spine, Vol. 20, pp. 689-698., 1995
Goel, V. K., Ramirez, S. A., Kong, W., and Gilbertson, L. G., Cancellous bone Young’s modulus variation within the vertebral body of a ligamentous lumbar spine – application of bone adaptive remodeling concepts, Journal of Biomechanical Engineering, Vol. 117, pp. 266-271, 1995
Goto, K., Tajima, N., Chosa, E., Totoribe, K., Kuroki, H., and Arizumi, Y., Mechanical analysis of the lumbar vertebrae in a three-dimensional finite element method model in which intradiscal pressure in the nucleus pulposus was used to establish the model, Journal of Orthopaedic Science, Vol. 7, No. 2, pp.243-246., 2002
Hakim, N. S., and King, A. I., A three-dimensional finite element dynamic response analysis of a vertebra with experimental verification, J. Biomech., Vol. 12, pp. 277-292., 1979
Kim, Y. E., Goel, V. K., Weinstein, J. N., and Lim, T-H., Effect of disc degeneration at one level on the adjacent level in axial mode, Spine, Vol. 16, pp. 331-350, 1991
Lee, C., Kim, Y. E., Lee, C.-S., Hong, Y.-M., Jung, J., and Goel, V. K. Impact response of the intevertebral disc in a finite element model, Spine, Vol. 25, pp. 2431-2439, 2000
McGill, S., and Norman, R., Partitioning of the L4-l5 dynamic moment into disc, ligamentous, and muscular components during lifting, Spine, Vol. 11, pp. 666-678, 1986
Natarajan, R. N., and Andersson, G. B. J., Modeling the annular incision in a herniated lumbar intervertebral disk to study its effect on disk stability, Computers & Structures, Vol. 64, No. 5/6, pp. 1291-1297, 1997
Ng, H.-W., and Teo, E.-C., Nonlinear Finite-Element Analysis of the Lower Cervical Spine(C4–C6) Under Axial Loading, Journal of Spinal Disorders, Vol. 14, No. 3, pp. 201–210, 2001
Nordin, M., and Frankel, V. H., Basic Biomechanics of the Musculoskeletal System, third edition, Lippincott Williams and Wilkins, Philadelphia, 2001
Pitzen, T., Geisler, F. H., Matthis, D.,Müller-Storz, H., Pedersen, K., and Steudel, W.-I., The influence of cancellous bone density on load sharing in human lumbar spine: a comparison between an intact and a surgically altered motion segment, European Spine Journal, Vol. 10, No. 1, pp. 23-29, 2001
Polikeit, A., Ferguson S. J., Nolte L. P., and Orr T. E., Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis, European Spine Journal, Vol. 12, No. 4, pp. 413-420, 2003
Sharma, M., Langrana, N. A., Rodriguez, J., Modeling of facet articulation as a nonlinear moving contact problem: sensitivity study on lumbar facet response, Journal of Biomechanical Engineering, Vol. 120, pp. 118-125, 1998
Sharma, M., Langrana, N. A., Rodriguez, J., Role of ligaments and facets in lumbar spinal stability, Spine, Vol. 20, No. 8, pp. 887-900, 1995
Silva, M. J., Wang, C., Keaveny, T. M., and Hayes, W. C., Direct and computed tomography thickness measurements of he human, lumbar vertebral shell and endplate, Bone, Vol. 15, No. 4, pp. 409-414, 1994
Smit, T. H., Odgaard, A., and Schneider, E., Structure and Function of Vertebral Trabecular Bone, Spine, Vol. 22, No. 24, pp. 2823-2833, 1997
Snell, R. S., Clinical anatomy for medical students, sixth edition, Lippincott Williams and Wilkins, Philadelphia, 2000
Wang, J.-L., Parnianpour, M. Shirazi-Adl, A., and Engin, A. E., The dynamic response of L2/L3 motion segment in cyclic axial compressive loading, Clinical Biomechanics, Vol. 13, Supplement, No. 1 pp. S16-S25, 1998
Wang, J.-L., Parnianpour, M. Shirazi-Adl, A., and Engin, A. E., Viscoelastic Finite-Element Analysis of a Lumbar Motion Segment in Combined Compression and Sagittal Flexion: Effect of Loading Rate, Spine, Vol. 25, No. 3, pp. 310-318, 2000
White III, A. A., and Panjabi, M. M., Clinical biomechanics of the spine, second edition, J.B. Lippincott Company, Philadelphia, 1990
Wilke, H.-J., Neef, P., Caimi, M., Hoogland, T., and Claes, L. E., New In Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life, Spine, Vol. 24, No. 8, pp. 755-762, 1999
謝牧鄰,以CT斷層掃描影像為基礎之脊椎有限元素分析,碩士論文,國立成功大學土木工程研究所,中華民國九十四年六月