簡易檢索 / 詳目顯示

研究生: 顏清章
Yen, Ching-Chang
論文名稱: 平衡態模型縮減問題之研究的概述
A Survey of Balanced Model Reduction for Descriptor Systems
指導教授: 王辰樹
Wang, Cheng-Shuh
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 36
中文關鍵詞: 平衡態模型縮減
外文關鍵詞: Balanced Model Reduction, Descriptor Systems
相關次數: 點閱:53下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇文章,我們從通解的型態來考慮平衡態模型縮減問題。並由連續型、離散型一連串的問題探討至周期性的模型縮減問題。

    In this thesis, we are to be deal with balanced model reduction for descriptor systems. We first consider the model reduction for a continuous-time descriptor system, then a discrete-time descriptor system. Finally, we study the model reduction for periodic descriptor systems.

    (1)Model Reduction for Continuous Time-invariant Descriptor System(2) (1.1)Introduction(2) (1.2)Preliminary(3) (1.3)Controllability and Observability Gramians(5) (1.4)Hankel singular value(9) (1.5)Balancing model reduction(10) (1.6)Conclusion(15) (2)Model Reduction for Discrete time-invariant Descriptor System(16) (2.1)Introduction(16) (2.2)Solvability and Conditionability(16) (2.3)Reachability and Observability(18) (2.4)Reachability and Observability Gramians(21) (2.5)Balancing model reduction(27) (2.6)Conclusion(28) (3)Model Reduction for Periodic Descriptor System(29) (3.1)Introduction(29) (3.2)Transfer Function Matrices(29) (3.3)Solvability and Conditionability(31) (3.4)Concluding Remarks(33)

    1. L. Dai. Singular Control Systems. Springer-Verlag Berlin, Heidelberg, 1989.
    2. B.N. Datta. Numerical Methods for Linear Control
    Systems Design and Analysis. Academic Press, Incorporated, 2003.
    3. T. E. Forthmann and K. L. Hitz. An Introduction
    to Linear Control System. M. Dekker, New York, 1977.
    4. H. Y. Fan. A note on reachability, observability and
    Lyapunov equations of periodic descriptor systems. A part of
    Ph.D. thesis, Dept. Math., National Tsing Hua University, Taiwan,
    2004.
    5. G. H. Golub, and C. F. Van Loan. Matrix
    Computations. Johns Hopkins Univ Pr, 1996.
    6. F.L. Lewis. Fundamental, reachability, and
    observability matrices for discrete systems. IEEE Trans.
    Automat. Control, 30(5): 502-505, 1985.
    7. W.-W. Lin and J.-G. Sun. Perturbation analysis
    for eigenproblem of periodic matrix pairs. Lin. Alg.
    Appl., 337: 157-187, 2001.
    8. L. Pernebo and L.M. Silverman. Model reduction via
    balanced state representations. IEEE Trans. Automat.
    Control, 27(2): 382-387, 1982.
    9. J. Sredhar and P. Van Dooren. Periodic descriptor
    system: Solvability and conditionability. IEEE Trans.
    Automat. Control, 44(2), 1999.
    10. J. Sredhar, P. Van Dooren, and B. Bamieh. Computing $H_{infty}-$ norm of discrete-time periodic
    system- A quadratically convergent algorithm. European
    Control Conf., 1997.
    11. G.W. Stewart, and J.G. Sun. Matrix Perturbation
    Theory. Academic Press, New York, 1990.
    12. T. Stykel. Model reduction of descriptor systems.
    Technical Report 720-2001, Institut f$ddot{u}$r Mathematik,
    Technisehe Universit$ddot{a}$t Berlin, D-10263 Berlin, Germany,
    2001.
    13. T. Stykel. Analysis and numerical solution of
    generalized Lyapunov equations. Ph.D. thesis, Institut
    f$ddot{u}$r Mathematik, Technisehe Universit$ddot{a}$t Berlin,
    Berlin, 2002.
    14. T. Stykel. Balanced truncation model reduction for semidiscretized stokes
    equation. Technical Report 04-2003, Institut f$ddot{u}$r
    Mathematik, Technisehe Universit$ddot{a}$t Berlin, 2003.
    15. P. Van Dooren. Two point boundary value and periodic
    eigenvalue problems. Proceedings IEEE CACSD conference,
    1999.
    16. W. Y. Wu. Periodic system of singular difference
    equations. Master thesis, Dept. Math., National Tsing Hua
    University, Taiwan, 1999.
    17. K. Zhou, J.C. Doyle, and K. Glover.Robust and
    Optimal Control. Prentice Hall, Upper Saddle River, New Jersey,
    1996.
    18. 呂碧湖. 線性系統理論基礎. 中國科學技術大學出版社,
    合肥, 1990.

    下載圖示 校內:立即公開
    校外:2004-06-07公開
    QR CODE