簡易檢索 / 詳目顯示

研究生: 許皓偉
Hsu, Hao-Wei
論文名稱: 大面積低成本製作具有表面增強拉曼散射的紙張基板
A facile and large-scale fabrication of paper-based surface enhanced Raman scattering substrate
指導教授: 黃志嘉
Huang, Chih-Chia
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 77
中文關鍵詞: 表面增強拉曼散射銀膠紙張基板穩定性光降解
外文關鍵詞: Surface-enhance Raman scattering, Ag paste, Paper-based substrate, Stability, Photocatalytic
相關次數: 點閱:108下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面增強拉曼散射(Surface-enhance Raman scattering, SERS)軟式纖維濾紙基板具有良好的靈敏度能用來檢測單分子以及有毒物質。在本實驗中,首先以疏水基板進行SERS基板製作,並且找到了單寧酸與四氯金酸的最佳參數,以亞甲基藍和4-nitrothiophenol(4-NTP)進行量測,還有使用了氧化石墨烯作為前驅物,能夠均勻覆蓋表面,也成功消滅共振拉曼所產生的螢光。黑色溶液的氧化石墨烯會吸收入射光,導致從基板回去的散射光減少進而降低拉曼訊號的表現。
    第二則是使用市售且價格便宜的銀膠沉積在纖維濾紙基板上使其基板具有SERS的效果。從銀膠的濃度及滴入次數的調整,找出最佳銀膠基板的參數,並且利用二次成長的濕化學合成技術以及半導體金屬二氧化錫對銀膠基板進行二次成長處理,由於原本的表面只有銀,經過二次成長金以及二氧化錫就讓表面多了奈米金以及表面變得粗糙不平整,處理過後L-AAH以及AuAgSnUV基板的拉曼強度大約可提升3倍。化學性吸附分子4-nitrothiophenol(4-NTP)能夠在近紅外雷射1064 nm拉曼系統底下還能夠擁有拉曼訊號。經過二次處理後的基板都能夠延緩氧化的效果,存放兩天還可以有70%的拉曼訊號,另外可以透過二氧化錫可光催化的特性使得基板可以降解有害染料孔雀石綠。

    Surface-enhance Raman scattering (SERS) of fiber substrate has good sensitivity and can be used to detect single molecules and toxic substances. This SERS substrate first made as with a hydrophobic substrate synthesized with tannic acid and chloroauric acid, and measured with methylene blue and 4-nitrothiophenol (4-NTP). Graphene oxide, which is also used as a precursor can evenly cover the surface and successfully eliminate the fluorescence generated by resonance Raman. Low cost and commercially available Ag paste deposits it on the fiber filter paper substrate in order to produce the substrate have a SERS effect. The best Ag paste substrate parameters were found by adjustment of the concentration of and number of drops. Ag paste substrate had been second growth to make the surface more and the surface becomes rough and uneven. After the treatment, the SERS strength can be increased by about three times. The chemical enhance 4-nitrothiophenol (4-NTP) can also have a Raman signal under the NIR 1064 nm Raman system. After the second treatment, the substrate can defer to the degree of oxidation, and the SERS intensity also keeps at less 70% after two days of storage. In addition, malachite green can be degraded through the substrate synthesized by SnO2. Finally, because of using paper substrate which is soft materials, it can be detected on portable Raman system. Measurement can be done anytime, anywhere.

    致謝 I 摘要 II Extended Abstract III 目錄 VI 表目錄 IX 圖目錄 IX 1. 緒論 1 1-1 拉曼光譜技術 1 1-1-1 拉曼散射(Raman scattering) 1 1-1-2 共振拉曼散射(Resonance Raman scattering) 3 1-1-3 表面增強拉曼散射(Surface-enhance Raman scattering) 3 1-2 表面增強拉曼(SERS)平台的材料種類 6 1-2-1 金奈米粒子 6 1-2-2 銀奈米粒子以及雙金屬 8 1-2-3 氧化石墨烯 11 1-2-4 二氧化錫 11 1-3 SERS平台的種類 14 1-3-1 固態基板與軟式基板介紹 14 1-3-2 濾紙纖維基板 14 1-3-3 疏水基板 15 2. 研究動機 16 3. 實驗方法 17 3-1 實驗材料 17 3-2 實驗合成步驟 19 3-2-1 合成奈米金玻璃纖維基板(G-Au) 19 3-2-2 合成金–氧化石墨烯玻璃纖維基板(G–AuGO) 19 3-2-3 合成銀膠基板 20 3-2-4 二次成長溼化學合成銀膠基板 21 3-2-5 添加二氧化錫搭配UV照射二次成長銀膠基板(AuAgSnUV基板) 21 3-3 測量拉曼前置作業準備 22 3-4 實驗設備及分析儀器 26 4. 結果與討論 28 4-1 玻璃基板開發及其特性 28 4-2 保護劑及CGO作為玻璃基板的前驅物 31 4-3 四種氧化石墨烯所製作的金-氧化石墨烯玻璃基板(G-AuGO)探討與分析 34 4-4 銀膠基板製作與分析 38 4-5 銀膠基板進行二次成長(溼化學合成)以及搭配綠光合成(AAH基板) 42 4-6 銀膠基板利用二氧化錫搭配UV光合成AuAgSnUV基板分析 50 4-7 AuAgSnUV與L-AAH基板在不同激發波長的拉曼強度比較 56 4-8 銀膠基板以及二次成長後基板穩定度 61 4-9 AuAgSnUV基板對於有毒物質MG的光降解 67 5. 結論 71 參考文獻 72

    1. Raman, C. V.; Krishnan, K. S., A New Type of Secondary Radiation. Nature 1928, 121 (3048), 501-502.
    2. Sun, B. N.; Chang, J.; Lian, J.; Wang, Z. L.; Lv, G. P.; Liu, X. Z.; Wang, W. J.; Zhou, S.; Wei, W.; Jiang, S.; Liu, Y. N.; Luo, S.; Liu, X. H.; Liu, Z.; Zhang, S. S., Accuracy improvement of Raman distributed temperature sensors based on eliminating Rayleigh noise impact. Optics Communications 2013, 306, 117-120.
    3. Matousek, P.; Everall, N.; Littlejohn, D.; Nordon, A.; Bloomfield, M., Dependence of signal on depth in transmission Raman spectroscopy. Applied spectroscopy 2011, 65 (7), 724-733.
    4. Clark, R. J. H.; Dines, T. J., Resonance Raman Spectroscopy, and Its Application to Inorganic Chemistry. New Analytical Methods (27). Angewandte Chemie International Edition in English 1986, 25 (2), 131-158.
    5. Efremov, E. V.; Ariese, F.; Gooijer, C., Achievements in resonance Raman spectroscopy: Review of a technique with a distinct analytical chemistry potential. Analytica Chimica Acta 2008, 606 (2), 119-134.
    6. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra from electrode surfaces. Journal of the Chemical Society, Chemical Communications 1973, (3), 80-81.
    7. Ding, S.-Y.; You, E.-M.; Tian, Z.-Q.; Moskovits, M., Electromagnetic theories of surface-enhanced Raman spectroscopy. Chemical Society Reviews 2017, 46 (13), 4042-4076.
    8. Ding, S.-Y.; Yi, J.; Li, J.-F.; Ren, B.; Wu, D.-Y.; Panneerselvam, R.; Tian, Z.-Q., Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nature Reviews Materials 2016, 1 (6), 16021.
    9. Sharma, B.; Frontiera, R. R.; Henry, A.-I.; Ringe, E.; Van Duyne, R. P., SERS: Materials, applications, and the future. Materials Today 2012, 15 (1), 16-25.
    10. Li, J.; Deng, T. S.; Liu, X.; Dolan, J. A.; Scherer, N. F.; Nealey, P. F., Hierarchical Assembly of Plasmonic Nanoparticle Heterodimer Arrays with Tunable Sub-5 nm Nanogaps. Nano Lett 2019, 19 (7), 4314-4320.
    11. Trivedi, D. J.; Barrow, B.; Schatz, G. C., Understanding the chemical contribution to the enhancement mechanism in SERS: Connection with Hammett parameters. The Journal of Chemical Physics 2020, 153 (12), 124706.
    12. Liang, P.; Cao, Y.; Dong, Q.; Wang, D.; Zhang, D.; Jin, S.; Yu, Z.; Ye, J.; Zou, M., A balsam pear-shaped CuO SERS substrate with highly chemical enhancement for pesticide residue detection. Microchimica Acta 2020, 187 (6), 335.
    13. Li, X.; Duan, X.; Li, L.; Ye, S.; Tang, B., An accurate and ultrasensitive SERS sensor with Au–Se interface for bioimaging and in situ quantitation. Chemical Communications 2020, 56 (65), 9320-9323.
    14. Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A., Turkevich Method for Gold Nanoparticle Synthesis Revisited. The Journal of Physical Chemistry B 2006, 110 (32), 15700-15707.
    15. Hong, S.; Li, X., Optimal Size of Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy under Different Conditions. Journal of Nanomaterials 2013, 2013, 790323.
    16. Liu, X.-L.; Liang, S.; Nan, F.; Yang, Z.-J.; Yu, X.-F.; Zhou, L.; Hao, Z.-H.; Wang, Q.-Q., Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS. Nanoscale 2013, 5 (12), 5368-5374.
    17. Magno, G.; Bélier, B.; Barbillon, G., Al/Si nanopillars as very sensitive SERS substrates. Materials 2018, 11 (9), 1534.
    18. Lu, G.; Forbes, T. Z.; Haes, A. J., SERS detection of uranyl using functionalized gold nanostars promoted by nanoparticle shape and size. Analyst 2016, 141 (17), 5137-5143.
    19. Indrasekara, A. D. S.; Meyers, S.; Shubeita, S.; Feldman, L. C.; Gustafsson, T.; Fabris, L., Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime. Nanoscale 2014, 6 (15), 8891-8899.
    20. Nam, N. H., Multifunctional Silver Nanoparticles: Synthesis and Applications. In Silver Micro-Nanoparticles-Properties, Synthesis, Characterization, and Applications, IntechOpen: 2021.
    21. Sanzone, G.; Zimbone, M.; Cacciato, G.; Ruffino, F.; Carles, R.; Privitera, V.; Grimaldi, M., Ag/TiO2 nanocomposite for visible light-driven photocatalysis. Superlattices and Microstructures 2018, 123, 394-402.
    22. Ryspayeva, A.; Jones, T. D.; Hughes, P. A.; Esfahani, M. N.; Shuttleworth, M. P.; Harris, R. A.; Kay, R. W.; Desmulliez, M. P.; Marques-Hueso, J. In PEI/Ag as an optical gas nano-sensor for intelligent food packaging, 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO), IEEE: 2018; pp 1-4.
    23. Luo, X.; Liu, W.; Chen, C.; Jiang, G.; Hu, X.; Zhang, H.; Zhong, M., Femtosecond laser micro-nano structured Ag SERS substrates with unique sensitivity, uniformity and stability for food safety evaluation. Optics & Laser Technology 2021, 139, 106969.
    24. Verma, S.; Rao, B. T.; Detty, A. P.; Ganesan, V.; Phase, D. M.; Rai, S. K.; Bose, A.; Joshi, S. C.; Kukreja, L. M., Surface plasmon resonances of Ag-Au alloy nanoparticle films grown by sequential pulsed laser deposition at different compositions and temperatures. Journal of Applied Physics 2015, 117 (13), 133105.
    25. Wang, K.; Sun, D.-W.; Pu, H.; Wei, Q., Shell thickness-dependent Au@ Ag nanoparticles aggregates for high-performance SERS applications. Talanta 2019, 195, 506-515.
    26. Merrifield, R. C.; Stephan, C.; Lead, J., Determining the concentration dependent transformations of Ag nanoparticles in complex media: Using SP-ICP-MS and Au@ Ag core–shell nanoparticles as tracers. Environmental Science & Technology 2017, 51 (6), 3206-3213.
    27. Zhao, Z.; Liu, W.; Zhao, J.; Dong, X.; Li, C.; Zhu, P.; Yu, X.; Dai, H., Size Effects of Closed Encounter Ag Nanoshell Pairs for SERS Application. Journal of Nanomaterials 2021, 2021.
    28. Lu, W.; Zhang, Y.; Zhang, J.; Xu, P., Reduction of gas CO2 to CO with high selectivity by Ag nanocube-based membrane cathodes in a photoelectrochemical system. Industrial & Engineering Chemistry Research 2020, 59 (13), 5536-5545.
    29. Tan, C. L.; Lee, S. K.; Lee, Y. T., Bi-SERS sensing and enhancement by Au-Ag bimetallic non-alloyed nanoparticles on amorphous and crystalline silicon substrate. Opt. Express 2015, 23 (5), 6254-6263.
    30. Hu, X.; Wang, X.; Ge, Z.; Zhang, L.; Zhou, Y.; Li, J.; Bu, L.; Wu, H.; Li, P.; Xu, W., Bimetallic plasmonic Au@Ag nanocuboids for rapid and sensitive detection of phthalate plasticizers with label-free surface-enhanced Raman spectroscopy. Analyst 2019, 144 (12), 3861-3869.
    31. Rivera-Rangel, R. D.; Navarro-Segura, M. E.; Arizmendi-Morquecho, A.; Sánchez-Domínguez, M., Electrodeposition of plasmonic bimetallic Ag-Cu nanodendrites and their application as surface-enhanced Raman spectroscopy (SERS) substrates. Nanotechnology 2020, 31 (46), 465605.
    32. Liu, H.; Yang, Q., Facile fabrication of nanoporous Au–Pd bimetallic foams with high catalytic activity for 2-nitrophenol reduction and SERS property. Journal of materials chemistry 2011, 21 (32), 11961-11967.
    33. Cui, Q.; Shen, G.; Yan, X.; Li, L.; Möhwald, H.; Bargheer, M., Fabrication of Au@ Pt multibranched nanoparticles and their application to in situ SERS monitoring. ACS applied materials & interfaces 2014, 6 (19), 17075-17081.
    34. Liu, C.; Xu, X.; Wang, C.; Qiu, G.; Ye, W.; Li, Y.; Wang, D., ZnO/Ag nanorods as a prominent SERS substrate contributed by synergistic charge transfer effect for simultaneous detection of oral antidiabetic drugs pioglitazone and phenformin. Sensors and Actuators B: Chemical 2020, 307, 127634.
    35. Kasry, A.; Ardakani, A. A.; Tulevski, G. S.; Menges, B.; Copel, M.; Vyklicky, L., Highly Efficient Fluorescence Quenching with Graphene. The Journal of Physical Chemistry C 2012, 116 (4), 2858-2862.
    36. Abid; Sehrawat, P.; Islam, S. S.; Mishra, P.; Ahmad, S., Reduced graphene oxide (rGO) based wideband optical sensor and the role of Temperature, Defect States and Quantum Efficiency. Scientific reports 2018, 8 (1), 3537-3537.
    37. Zhu, Z.; Dai, S.; Teng, Y.; Zhang, Z.; Qiu, Q.; Song, N.; Zhang, J.; Xiao, L.; Lin, L. In Development of Online Monitoring and Controlling System for the 630 kVA Three-Phase High Temperature Superconducting Transformer, 2012 Asia-Pacific Power and Energy Engineering Conference, 27-29 March 2012; 2012; pp 1-5.
    38. Bonu, V.; Das, A.; Prasad, A. K.; Krishna, N. G.; Dhara, S.; Tyagi, A., Influence of in-plane and bridging oxygen vacancies of SnO2 nanostructures on CH4 sensing at low operating temperatures. Applied Physics Letters 2014, 105 (24), 243102.
    39. Wan, Q.; Dattoli, E. N.; Lu, W., Transparent metallic Sb-doped Sn O 2 nanowires. Applied Physics Letters 2007, 90 (22), 222107.
    40. Birkel, A.; Lee, Y.-G.; Koll, D.; Van Meerbeek, X.; Frank, S.; Choi, M. J.; Kang, Y. S.; Char, K.; Tremel, W., Highly efficient and stable dye-sensitized solar cells based on SnO 2 nanocrystals prepared by microwave-assisted synthesis. Energy & Environmental Science 2012, 5 (1), 5392-5400.
    41. Kravchyk, K.; Protesescu, L.; Bodnarchuk, M. I.; Krumeich, F.; Yarema, M.; Walter, M.; Guntlin, C.; Kovalenko, M. V., Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes. Journal of the American Chemical Society 2013, 135 (11), 4199-4202.
    42. Chang, Y.-C.; Wu, S.-H., Bi-functional Al-doped ZnO@SnO2 heteronanowires as efficient substrates for improving photocatalytic and SERS performance. Journal of Industrial and Engineering Chemistry 2019, 76, 333-343.
    43. Liu, B.; Zhang, W.; Lv, H.; Zhang, D.; Gong, X., Novel Ag decorated biomorphic SnO2 inspired by natural 3D nanostructures as SERS substrates. Materials Letters 2012, 74, 43-45.
    44. Mostafa, A. M.; Mwafy, E. A., Effect of dual-beam laser radiation for synthetic SnO2/Au nanoalloy for antibacterial activity. Journal of Molecular Structure 2020, 1222, 128913.
    45. Bao, H.; Zhang, H.; Zhang, P.; Fu, H.; Zhou, L.; Li, Y.; Cai, W., Conductometric Response-Triggered Surface-Enhanced Raman Spectroscopy for Accurate Gas Recognition and Monitoring Based on Oxide-wrapped Metal Nanoparticles. ACS Sensors 2020, 5 (6), 1641-1649.
    46. Jiang, X.; Zhang, L.; Wang, T.; Wan, Q., High surface-enhanced Raman scattering activity from Au-decorated individual and branched tin oxide nanowires. Journal of Applied Physics 2009, 106 (10), 104316.
    47. Mohanta, D.; Ahmaruzzaman, M., A novel Au-SnO2-rGO ternary nanoheterojunction catalyst for UV-LED induced photocatalytic degradation of clothianidin: Identification of reactive intermediates, degradation pathway and in-depth mechanistic insight. Journal of Hazardous Materials 2020, 397, 122685.
    48. Bhardwaj, N.; Satpati, B.; Mohapatra, S., Plasmon-enhanced photoluminescence from SnO2 nanostructures decorated with Au nanoparticles. Applied Surface Science 2020, 504, 144381.
    49. Luo, J.; Jiang, Y.; Guo, X.; Ying, Y.; Wen, Y.; Lin, P.; Sun, Y.; Yang, H.; Wu, Y., SnO2 nanofibers decorated with Au nanoparticles for Ru(bpy)32+ sensitized photoelectrochemical determination of NO2− in urine. Sensors and Actuators B: Chemical 2020, 309, 127714.
    50. Wei, N.; Lv, C.; Xu, Z., Wetting of Graphene Oxide: A Molecular Dynamics Study. Langmuir 2014, 30 (12), 3572-3578.
    51. Xiong, L.; Guo, Y.; Wen, J.; Liu, H.; Yang, G.; Qin, P.; Fang, G., Review on the Application of SnO2 in Perovskite Solar Cells. Advanced Functional Materials 2018, 28 (35), 1802757.
    52. Mampallil, D.; Eral, H. B., A review on suppression and utilization of the coffee-ring effect. Adv Colloid Interface Sci 2018, 252, 38-54.
    53. Hu, Y.; Feng, S.; Gao, F.; Li-Chan, E. C. Y.; Grant, E.; Lu, X., Detection of melamine in milk using molecularly imprinted polymers–surface enhanced Raman spectroscopy. Food Chemistry 2015, 176, 123-129.
    54. Su, Y.; Li, K.; Yu, X., Theoretical Studies on the Fluorescence Enhancement of Benzaldehydes by Intermolecular Hydrogen Bonding. The Journal of Physical Chemistry B 2019, 123 (4), 884-890.
    55. Mirbagheri, M.; Kaur, J.; Pham, H. V.; Adibnia, V.; Zarrin, H.; Banquy, X.; Hwang, D. K., Plasmon-Free Polymeric Nanowrinkled Substrates for Surface-Enhanced Raman Spectroscopy of Two-Dimensional Materials. Langmuir 2021, 37 (1), 322-329.
    56. Tseng, S.-C.; Yu, C.-C.; Wan, D.; Chen, H.-L.; Wang, L. A.; Wu, M.-C.; Su, W.-F.; Han, H.-C.; Chen, L.-C., Eco-Friendly Plasmonic Sensors: Using the Photothermal Effect to Prepare Metal Nanoparticle-Containing Test Papers for Highly Sensitive Colorimetric Detection. Analytical Chemistry 2012, 84 (11), 5140-5145.
    57. Tseng, S.-Y.; Li, S.-Y.; Yi, S.-Y.; Sun, A. Y.; Gao, D.-Y.; Wan, D., Food Quality Monitor: Paper-Based Plasmonic Sensors Prepared Through Reversal Nanoimprinting for Rapid Detection of Biogenic Amine Odorants. ACS Applied Materials & Interfaces 2017, 9 (20), 17306-17316.
    58. Liu, H.; Zhang, Y.; Arato, D.; Li, R.; Mérel, P.; Sun, X., Aligned multi-walled carbon nanotubes on different substrates by floating catalyst chemical vapor deposition: Critical effects of buffer layer. Surface and Coatings Technology 2008, 202 (17), 4114-4120.
    59. Tang, W.; Chase, D. B.; Rabolt, J. F., Immobilization of Gold Nanorods onto Electrospun Polycaprolactone Fibers Via Polyelectrolyte Decoration—A 3D SERS Substrate. Analytical Chemistry 2013, 85 (22), 10702-10709.
    60. Jin, X.; Guo, P.; Guan, P.; Wang, S.; Lei, Y.; Wang, G., The fabrication of paper separation channel based SERS substrate and its recyclable separation and detection of pesticides. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020, 240, 118561.
    61. Wu, L.; Zhang, W.; Liu, C.; Foda, M. F.; Zhu, Y., Strawberry-like SiO2/Ag nanocomposites immersed filter paper as SERS substrate for acrylamide detection. Food Chemistry 2020, 328, 127106.
    62. Lin, S.; Lin, X.; Han, S.; Liu, Y.; Hasi, W.; Wang, L., Flexible fabrication of a paper-fluidic SERS sensor coated with a monolayer of core–shell nanospheres for reliable quantitative SERS measurements. Analytica Chimica Acta 2020, 1108, 167-176.
    63. Zhang, L.; Liu, J.; Zhou, G.; Zhang, Z., Controllable In-Situ Growth of Silver Nanoparticles on Filter Paper for Flexible and Highly Sensitive SERS Sensors for Malachite Green Residue Detection. Nanomaterials 2020, 10 (5), 826.
    64. Zhang, C.; You, T.; Yang, N.; Gao, Y.; Jiang, L.; Yin, P., Hydrophobic paper-based SERS platform for direct-droplet quantitative determination of melamine. Food Chemistry 2019, 287, 363-368.
    65. Chou, S.-Y.; Yu, C.-C.; Yen, Y.-T.; Lin, K.-T.; Chen, H.-L.; Su, W.-F., Romantic Story or Raman Scattering? Rose Petals as Ecofriendly, Low-Cost Substrates for Ultrasensitive Surface-Enhanced Raman Scattering. Analytical Chemistry 2015, 87 (12), 6017-6024.
    66. Kumar, P.; Khosla, R.; Soni, M.; Deva, D.; Sharma, S. K., A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template. Sensors and Actuators B: Chemical 2017, 246, 477-486.
    67. Parnsubsakul, A.; Ngoensawat, U.; Wutikhun, T.; Sukmanee, T.; Sapcharoenkun, C.; Pienpinijtham, P.; Ekgasit, S., Silver nanoparticle/bacterial nanocellulose paper composites for paste-and-read SERS detection of pesticides on fruit surfaces. Carbohydrate Polymers 2020, 235, 115956.
    68. Lee, C.-W.; Ko, H.; Chang, S.-H. G.; Huang, C.-C., Invisible-ink-assisted pattern and written surface-enhanced Raman scattering substrates for versatile chem/biosensing platforms. Green Chemistry 2018, 20 (23), 5318-5326.
    69. Hsu, C.-W.; Cheng, N.-C.; Liao, M.-Y.; Cheng, T.-Y.; Chiu, Y.-C., Development of Folic Acid-Conjugated and Methylene Blue-Adsorbed Au@TNA Nanoparticles for Enhanced Photodynamic Therapy of Bladder Cancer Cells. Nanomaterials 2020, 10 (7), 1351.
    70. Zhao, Y.; Tian, Y.; Ma, P.; Yu, A.; Zhang, H.; Chen, Y., Determination of melamine and malachite green by surface-enhanced Raman scattering spectroscopy using starch-coated silver nanoparticles as substrates. Analytical Methods 2015, 7 (19), 8116-8122.
    71. Ling, Y.; Xie, W. C.; Liu, G. K.; Yan, R. W.; Wu, D. Y.; Tang, J., The discovery of the hydrogen bond from p-Nitrothiophenol by Raman spectroscopy: Guideline for the thioalcohol molecule recognition tool. Scientific Reports 2016, 6 (1), 31981.
    72. Unnikrishnan, B.; Wu, C.-W.; Chen, I. W. P.; Chang, H.-T.; Lin, C.-H.; Huang, C.-C., Carbon Dot-Mediated Synthesis of Manganese Oxide Decorated Graphene Nanosheets for Supercapacitor Application. ACS Sustainable Chemistry & Engineering 2016, 4 (6), 3008-3016.
    73. Ebajo, V. D.; Santos, C. R. L.; Alea, G. V.; Lin, Y. A.; Chen, C.-H., Regenerable Acidity of Graphene Oxide in Promoting Multicomponent Organic Synthesis. Scientific Reports 2019, 9 (1), 15579.
    74. Xiao, G.-N.; Man, S.-Q., Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles. Chemical Physics Letters 2007, 447 (4-6), 305-309.
    75. Liu, J.-H.; Wang, A.-Q.; Chi, Y.-S.; Lin, H.-P.; Mou, C.-Y., Synergistic effect in an Au− Ag alloy nanocatalyst: CO oxidation. The Journal of Physical Chemistry B 2005, 109 (1), 40-43.
    76. Lee, C.-W.; Chia, Z. C.; Hsieh, Y.-T.; Tsai, H.-C.; Tai, Y.; Yu, T.-T.; Huang, C.-C., A facile wet-chemistry approach to engineer an Au-based SERS substrate and enhance sensitivity down to ppb-level detection. Nanoscale 2021, 13 (7), 3991-3999.
    77. Zhou, H.; Kim, J.-P.; Bahng, J. H.; Kotov, N. A.; Lee, J., Self-Assembly Mechanism of Spiky Magnetoplasmonic Supraparticles. Advanced Functional Materials 2014, 24 (10), 1439-1448.
    78. Zhang, G.; Du, M.; Li, Q.; Li, X.; Huang, J.; Jiang, X.; Sun, D., Green synthesis of Au–Ag alloy nanoparticles using Cacumen platycladi extract. RSC advances 2013, 3 (6), 1878-1884.
    79. Amendola, V.; Meneghetti, M., Size Evaluation of Gold Nanoparticles by UV−vis Spectroscopy. The Journal of Physical Chemistry C 2009, 113 (11), 4277-4285.
    80. Jiang, L.; Yin, P.; You, T.; Wang, H.; Lang, X.; Guo, L.; Yang, S., Highly Reproducible Surface-Enhanced Raman Spectra on Semiconductor SnO2 Octahedral Nanoparticles. ChemPhysChem 2012, 13 (17), 3932-3936.
    81. Debataraja, A.; Zulhendri, D. W.; Yuliarto, B.; Nugraha; Hiskia; Sunendar, B., Investigation of Nanostructured SnO2 Synthesized with Polyol Technique for CO Gas Sensor Applications. Procedia Engineering 2017, 170, 60-64.
    82. Wang, J.; An, C.; Zhang, M.; Qin, C.; Ming, X.; Zhang, Q., ChemInform Abstract: Photochemical Conversion of AgCl Nanocubes to Hybrid AgCl-Ag Nanoparticles with High Activity and Long-Term Stability Towards Photocatalytic Degradation of Organic Dyes. Canadian Journal of Chemistry 2012, 90, 858-864.
    83. Guo, Y.; Shu, C.-C.; Dong, D.; Nori, F., Vanishing and revival of resonance Raman scattering. Physical review letters 2019, 123 (22), 223202.
    84. Skadtchenko, B. O.; Aroca, R., Surface-enhanced Raman scattering of p-nitrothiophenol: Molecular vibrations of its silver salt and the surface complex formed on silver islands and colloids. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2001, 57 (5), 1009-1016.
    85. Xiao, G.-N.; Man, S., The Effect of L-Cysteine on Surface-Enhanced Raman Scattering of Malachite Green in Silver Colloids. Spectroscopy Letters 2013, 46, 577-582.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE