| 研究生: |
楊卓南 Yeung, Cheuk-Nam |
|---|---|
| 論文名稱: |
RO系統中頑固有機物之特性分析-以半導體產業放流水為例 Characterization of recalcitrant substance in RO membrane filtration: Using semiconductor wastewater effluent as an example |
| 指導教授: |
陳?如
Chen, Wan-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 小分子有機物 、水回收 、螢光偵測 、薄膜貫穿 、有機物特性分析 |
| 外文關鍵詞: | low molecular weight compound, water reclamation, fluorescence detection, membrane passage, organic characterization |
| 相關次數: | 點閱:41 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
水資源短缺為全球性的問題,為了穩定的水源供應,近年水資源回收再利用的也需求日趨普遍。然而,複雜的水源中可能含有難去除物質,如果進行水回收將大大增加回收難度,或因無法達到水質要求而增加二次處理成本。因此,如果能進一步了解有機物的特性,將能避免因回收水水質不佳而增加的處理成本。
本研究以半導體製造業為例,對廠中回收水的進行特性分析。該廠主要以薄膜系統進行水回收,為驗證難處理有機物的存在,以物理化學特性從廠區製程所使用的原材料中篩選出七種高風險的貫穿薄膜化合物,包括isopropanol (IPA), ethanolamine (MEA), dimethyl sulfoxide (DMSO), cyclopentanone (CPN), N-methyl-2-pyrrolidone (NMP), 1-Ethyl-2-pyrrolidinone (NEP)以及butyldiglycol (BDG)。七種物質分別進行了RO薄膜過濾實驗,結果顯示七種原料皆具貫穿RO薄膜之情形;亦比較了其化學氧化式COD及完全燃燒式TOC之理論值與實際測值,發現其中DMSO之COD實際測值僅13.8%,而其TOC則實際測值將近理論值,顯示傳統水質指標可能低估收受處理水中之有機物含量而無法保證回收水品質導致產水水質不良事件發生的可能,因此需開發除傳統水質指標外之替代監測方式以預防產水不良之頻率。此外該半導體再生水廠亦考慮收受處理印刷電路板(PCB)廠之放流水以擴充其產能,因此本研究亦應用開發之傳統水質替代指標以評估PCB廠放流水收受處理可行性。
本研究以HPLC-FLD全掃描分析廠區不良產水,篩選出了六對螢光激發波長/發射波長訊信,分別為Ex./Em. = 208/301 nm, Ex./Em. = 254/400 nm, Ex./Em. = 260/345 nm, Ex./Em. = 280/308 nm, Ex./Em. = 280/400 nm, Ex./Em. = 280/570 nm作為分析條件,並評估作為替代水質指標的可行性,結果顯示FLD訊號雖然能夠測到難去除有機物,但無法當作一個直接的水質指標,因為FLD訊號於水源中的存在並不一定代表有該物質會貫穿薄膜。在後續量化難去除有機物上,尋得不良產水的主要特徵訊號為Ex./Em. = 280/308 nm。另以HPSEC系統對進一步了解有貫穿現象的水樣其有機物組成,從水樣中發現如果小分子 (<300 Da)化合物佔比超過50%可能會有較大貫穿風險。而在評估PCB廠棟放流水是否適合進行水回收的評估上,因平均TOC濃度(6.57 mg C/L)相比目前收受廠棟的放流水濃度要高 (4.48 mg C/L),另其於通過RO前後皆測得FLD訊號,且於PCB廠兩次放流水HPSEC分析中小分子有機物 (<300 Da)為分別佔51.8及83.6%,因此PCB廠棟放流水進行水回收可能會增加不良產水的風險。本研究藉FLD訊號及HPSEC分析建立了一套水源篩選機制,以減少不良產水事件的可能。
Water scarcity is now a critical issue worldwide, while the demand for water reclamation has kept increasing in recent years to maintain a stable water supply. However, complex water sources may contain recalcitrant substances that make water reclamation more difficult and increase the cost of secondary treatment due to the unqualified water quality. Therefore, further understanding the characteristics of recalcitrant substances can help prevent the additional costs incurred due to unqualified reclaimed water.
Characterization analysis using reclaimed water from the semiconductor industry as an example was discussed in this study. The water reclamation plant mainly uses membrane filtration technologies. First, seven high-risk compounds of membrane passage were selected from the raw materials used in the manufacturing processes based on their physicochemical properties to confirm the presence of recalcitrant organic substances, including isopropanol (IPA), ethanolamine (MEA), dimethyl sulfoxide (DMSO), cyclopentanone (CPN), N-methyl-2-pyrrolidone (NMP), 1-Ethyl-2-pyrrolidinone (NEP), and butyldiglycol (BDG). Each of the seven substances underwent reverse osmosis (RO) membrane filtration experiments, and the results showed that all seven materials penetrated the RO membranes. The theoretical values and actual measurements of chemical oxygen demand (COD) and total organic carbon (TOC) to assess the organic compound content was also compared. It was found that the COD recovery rate for DMSO was only 13.8%, while the TOC recovery rate was nearly complete. This indicates that conventional water quality indicators might underestimate the organic compound content, leading to the potential of unqualified reclaimed water incidents. Therefore, it is necessary to develop alternative analyzing methods beyond traditional water quality indicators to prevent unqualified reclaimed water risks. Furthermore, the water reclamation plant also considered treating the effluent water from the printed circuit board (PCB) manufacturing process to expand its capacity. Therefore, this study also applied the developed alternative water quality indicators to evaluate the feasibility of PCB plant effluent for water reclamation.
In this study, HPLC-FLD was used for the whole scanning of unqualified reclaimed water. Six fluorescence excitation/emission wavelength pairs were screened as analytical conditions, including Ex./Em. = 208/301 nm, Ex./Em. = 254/400 nm, Ex./Em. = 260/345 nm, Ex./Em. = 280/308 nm, Ex./Em. = 280/400 nm, Ex./Em. = 280/570 nm, and the feasibility of using these signals as alternative water quality indicators were evaluated. The results showed that although FLD signals could detect recalcitrant organic substances, but could not act as a direct water quality indicator because the presence of FLD signals in the water source did not indicate the membrane passage of these substances. To quantify the recalcitrant organic substances, the main characteristic signal of unqualified reclaimed water was identified as Ex./Em. = 280/308 nm. In addition, the HPSEC system was used to further understand the organic composition of water samples with membrane passage. If the proportion of low molecular weight substances (<300 Da) exceeds 50%, there could be a higher risk of membrane passage. In evaluating whether the PCB plant's effluent is suitable for water reclamation, the average TOC concentration (6.57 mg C/L) was higher than the existing plants' effluent concentration (4.48 mg C/L). Furthermore, FLD signals were detected both before and after the reverse osmosis (RO) process, and in the HPSEC analysis of the PCB plant's effluent of two trials, low molecular weight compounds (<300 Da) accounted for 51.8% and 83.6%, respectively. Therefore, recycling the PCB plant's effluent might increase the risk of unqualified reclaimed water. This study established a water source screening process using FLD signals and HPSEC analysis to reduce adverse water quality incidents.
Anderson, J. E.; Mueller, S. A.; Kim, B. R. (2007) Incomplete oxidation of ethylenediaminetetraacetic acid in chemical oxygen demand analysis. Water environment research, 79, 1043-1049.
Anis, S. F.; Hashaikeh, R.; Hilal, N. (2019) Reverse osmosis pretreatment technologies and future trends: A comprehensive review. Desalination, 452, 159-195.
Asano, T. (2002) Water from (waste) water–the dependable water resource (The 2001 Stockholm Water Prize Laureate Lecture). Water science and technology, 45, 23-33.
Asano, T.; Burton, F.; Leverenz, H. (2007) Water reuse: issues, technologies, and applications. McGraw-Hill Education.
Bachmann, N.; la Cour Jansen, J.; Bochmann, G.; Montpart, N. (2015) Sustainable biogas production in municipal wastewater treatment plants. IEA Bioenergy Massongex, Switzerland.
Bellona, C.; Drewes, J. E.; Xu, P.; Amy, G. (2004) Factors affecting the rejection of organic solutes during NF/RO treatment—a literature review. Water Research, 38, 2795-2809.
Breitner, L. N.; Howe, K. J.; Minakata, D. (2019) Effect of Functional Chemistry on the Rejection of Low-Molecular Weight Neutral Organics through Reverse Osmosis Membranes for Potable Reuse. Environmental Science & Technology, 53, 11401-11409.
Central Weather Bureau. (2022) 中央氣象局110年氣候年報.
Chang, D.; Ma, Z. (2012) Wastewater reclamation and reuse in Beijing: Influence factors and policy implications. Desalination, 297, 72-78.
Chang, K. F.; Yang, S. Y.; You, H. S.; Pan, J. R. (2008) Anaerobic Treatment of Tetra-Methyl Ammonium Hydroxide (TMAH) Containing Wastewater. IEEE Transactions on Semiconductor Manufacturing, 21, 486-491.
Chen, T.; Ni, C.; Chan, Y.; Lu, M. (2005) MBR/RO/ozone processes for TFT-LCD industrial wastewater treatment and recycling. Water Science and Technology, 51, 411-419.
Chen, W.; Westerhoff, P.; Leenheer, J. A.; Booksh, K. (2003) Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environmental Science & Technology, 37, 5701-5710.
Cherchi, C.; Kesaano, M.; Badruzzaman, M.; Schwab, K.; Jacangelo, J. G. (2019) Municipal reclaimed water for multi-purpose applications in the power sector: A review. Journal of Environmental Management, 236, 561-570.
Chow, C. W. K.; Fabris, R.; Leeuwen, J. v.; Wang, D.; Drikas, M. (2008) Assessing Natural Organic Matter Treatability Using High Performance Size Exclusion Chromatography. Environmental Science & Technology, 42, 6683-6689.
Colades, J. I.; de Luna, M. D. G.; Su, C.-C.; Lu, M.-C. (2015) Treatment of thin film transistor-liquid crystal display (TFT-LCD) wastewater by the electro-Fenton process. Separation and Purification Technology, 145, 104-112.
Council, N. R. (2012) Water Reuse: Potential for Expanding the Nation's Water Supply Through Reuse of Municipal Wastewater. The National Academies Press: Washington, DC.
Davenport, D. M.; Deshmukh, A.; Werber, J. R.; Elimelech, M. (2018) High-pressure reverse osmosis for energy-efficient hypersaline brine desalination: current status, design considerations, and research needs. Environmental Science & Technology Letters, 5, 467-475.
Deng, H. (2020) A review on the application of ozonation to NF/RO concentrate for municipal wastewater reclamation. Journal of Hazardous Materials, 391, 122071.
Deng, S.; Yan, X.; Zhu, Q.; Liao, C. (2019) The utilization of reclaimed water: Possible risks arising from waterborne contaminants. Environmental Pollution, 254, 113020.
Devaisy, S.; Kandasamy, J.; Aryal, R.; Johir, M. A. H.; Ratnaweera, H.; Vigneswaran, S. (2023) Removal of Organics with Ion-Exchange Resins (IEX) from Reverse Osmosis Concentrate. Membranes, 13, 136.
Ding, S.; Yang, Y.; Li, C.; Huang, H.; Hou, L.-a. (2016) The effects of organic fouling on the removal of radionuclides by reverse osmosis membranes. Water Research, 95, 174-184.
DWRT. (2023) 再生水質標準 - 再生水宣導網 Available from: http://demo.net5s.com/tywater/?.p=HjpH&.f=x002&.__id=P20170630173129921.
Ebrahimzadeh, S.; Wols, B.; Azzellino, A.; Martijn, B. J.; van der Hoek, J. P. (2021) Quantification and modelling of organic micropollutant removal by reverse osmosis (RO) drinking water treatment. Journal of Water Process Engineering, 42, 102164.
Erickson, H. P. (2009) Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biological procedures online, 11, 32-51.
Gao, W.; Liang, H.; Ma, J.; Han, M.; Chen, Z.-l.; Han, Z.-s.; Li, G.-b. (2011) Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination, 272, 1-8.
Greenlee, L. F.; Lawler, D. F.; Freeman, B. D.; Marrot, B.; Moulin, P. (2009) Reverse osmosis desalination: water sources, technology, and today's challenges. Water research, 43, 2317-2348.
Gupta, V. K.; Ali, I.; Saleh, T. A.; Nayak, A.; Agarwal, S. (2012) Chemical treatment technologies for waste-water recycling—an overview. Rsc Advances, 2, 6380-6388.
Held, D. (2018) Tips & Tricks GPC/SEC: How Do Calibration Curves Influence GPC/SEC Results? The Column, 14, 28-34.
Her, N.; Amy, G.; Foss, D.; Cho, J.; Yoon, Y.; Kosenka, P. (2002) Optimization of Method for Detecting and Characterizing NOM by HPLC−Size Exclusion Chromatography with UV and On-Line DOC Detection. Environmental Science & Technology, 36, 1069-1076.
Huang, H.; Liu, J.; Zhang, P.; Zhang, D.; Gao, F. (2017) Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation. Chemical Engineering Journal, 307, 696-706.
Ivnitsky, H.; Katz, I.; Minz, D.; Shimoni, E.; Chen, Y.; Tarchitzky, J.; Semiat, R.; Dosoretz, C. (2005) Characterization of membrane biofouling in nanofiltration processes of wastewater treatment. Desalination, 185, 255-268.
Ji, W.-X.; Tian, Y.-C.; Li, A.-m.; Gu, X.-M.; Sun, H.-F.; Cai, M.-H.; Shen, S.-Q.; Zuo, Y.-T.; Li, W.-T. (2022) Unravelling relationships between fluorescence spectra, molecular weight distribution and hydrophobicity fraction of dissolved organic matter in municipal wastewater. Chemosphere, 308, 136359.
Jiang, S.; Li, Y.; Ladewig, B. P. (2017) A review of reverse osmosis membrane fouling and control strategies. Science of The Total Environment, 595, 567-583.
Jjemba, P.; Johnson, W.; Bukhari, Z.; LeChevallier, M. (2014) Review of the leading challenges in maintaining reclaimed water quality during storage and distribution. Journal of water reuse and desalination, 4, 209-237.
Karl, T. R.; Melillo, J. M.; Peterson, T. C. (2009) Global climate change impacts in the United States: a state of knowledge report from the US Global Change Research Program. Cambridge University Press.
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B. A.; Thiessen, P. A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E. E. (2022) PubChem 2023 update. Nucleic Acids Research, 51, D1373-D1380.
Kimura, K.; Toshima, S.; Amy, G.; Watanabe, Y. (2004) Rejection of neutral endocrine disrupting compounds (EDCs) and pharmaceutical active compounds (PhACs) by RO membranes. Journal of Membrane Science, 245, 71-78.
Kog, Y. C. (2020) Water reclamation and reuse in Singapore. Journal of Environmental Engineering, 146, 03120001.
Kriger, C. (2007) Prediction of the influent wastewater variables using neural network theory.
Lai, C.-H.; Chou, Y.-C.; Yeh, H.-H. (2015) Assessing the interaction effects of coagulation pretreatment and membrane material on UF fouling control using HPSEC combined with peak-fitting. Journal of Membrane Science, 474, 207-214.
Lee, H.; Jin, Y.; Hong, S. (2016) Recent transitions in ultrapure water (UPW) technology: Rising role of reverse osmosis (RO). Desalination, 399, 185-197.
Liang, Y.-C.; Daverey, A.; Huang, Y.-T.; Sung, S.; Lin, J.-G. (2016) Treatment of semiconductor wastewater using single-stage partial nitrification and anammox in a pilot-scale reactor. Journal of the Taiwan Institute of Chemical Engineers, 63, 236-242.
Lin, S. H.; Yang, C. R. (2004) Chemical and physical treatments of chemical mechanical polishing wastewater from semiconductor fabrication. Journal of Hazardous Materials, 108, 103-109.
Lofrano, G.; Meriç, S.; Belgiorno, V.; Nikolaou, A.; Napoli, R. (2007) Fenton and photo-Fenton treatment of a synthetic tannin used in leather tannery: a multi-approach study. Water science and technology, 55, 53-61.
Lyu, S.; Chen, W.; Zhang, W.; Fan, Y.; Jiao, W. (2016) Wastewater reclamation and reuse in China: Opportunities and challenges. Journal of Environmental Sciences, 39, 86-96.
Malik, S. N.; Ghosh, P. C.; Vaidya, A. N.; Mudliar, S. N. (2020) Ozone pretreatment of biomethanated distillery wastewater in a semi batch reactor: mapping pretreatment efficiency in terms of COD, color, toxicity and biohydrogen generation. Biofuels, 11, 801-809.
Matsuura, T.; Blais, P.; Dickson, J.; Sourirajan, S. (1974) Reverse osmosis separations for some alcohols and phenols in aqueous solutions using aromatic polyamide membranes. Journal of Applied Polymer Science, 18, 3671-3684.
MOEA. (2015) Reclaimed Water Resources Development Act. Available from: https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=J0110094.
Nunes, S. P.; Culfaz-Emecen, P. Z.; Ramon, G. Z.; Visser, T.; Koops, G. H.; Jin, W.; Ulbricht, M. (2020) Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes. Journal of Membrane Science, 598, 117761.
Ojajuni, O.; Saroj, D.; Cavalli, G. (2015) Removal of organic micropollutants using membrane-assisted processes: a review of recent progress. Environmental Technology Reviews, 4, 17-37.
Osiński, Z.; Patyra, E.; Kwiatek, K. (2022) HPLC-FLD-based method for the detection of sulfonamides in organic fertilizers collected from Poland. Molecules, 27, 2031.
Ozaki, H.; Li, H. (2002) Rejection of organic compounds by ultra-low pressure reverse osmosis membrane. Water Research, 36, 123-130.
Pan, S.-Y.; Snyder, S. W.; Ma, H.-W.; Lin, Y. J.; Chiang, P.-C. (2018) Energy-efficient resin wafer electrodeionization for impaired water reclamation. Journal of Cleaner Production, 174, 1464-1474.
Priambodo, R.; Shih, Y.-J.; Huang, Y.-H. (2017) Phosphorus recovery as ferrous phosphate (vivianite) from wastewater produced in manufacture of thin film transistor-liquid crystal displays (TFT-LCD) by a fluidized bed crystallizer (FBC). RSC advances, 7, 40819-40828.
Puchala, D. J.; Staveley, J. (2019) The political economy of Taiwanese agricultural development, Food, Politics, and Agricultural Development: Case Studies in the Public Policy of Rural Modernization. Routledge, pp. 107-131.
Ranjit, P.; Jhansi, V.; Reddy, K. V. (2021) Conventional wastewater treatment processes. Advances in the Domain of Environmental Biotechnology: Microbiological Developments in Industries, Wastewater Treatment and Agriculture, 455-479.
Sengar, A.; Vijayanandan, A. (2022) Effects of pharmaceuticals on membrane bioreactor: Review on membrane fouling mechanisms and fouling control strategies. Science of The Total Environment, 808, 152132.
Shanmuganathan, S.; Loganathan, P.; Kazner, C.; Johir, M. A. H.; Vigneswaran, S. (2017) Submerged membrane filtration adsorption hybrid system for the removal of organic micropollutants from a water reclamation plant reverse osmosis concentrate. Desalination, 401, 134-141.
Shirazi, S.; Lin, C.-J.; Chen, D. (2010) Inorganic fouling of pressure-driven membrane processes—A critical review. Desalination, 250, 236-248.
Sierra Circuits. (2023) PCB Manufacturing. Available from: https://www.protoexpress.com/kb/pcb-manufacturing-overview/.
Snyder, S. A.; Adham, S.; Redding, A. M.; Cannon, F. S.; DeCarolis, J.; Oppenheimer, J.; Wert, E. C.; Yoon, Y. (2007) Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination, 202, 156-181.
Szabo, H. M.; Lepistö, R.; Tuhkanen, T. (2016) HPLC-SEC: a new approach to characterise complex wastewater effluents. International Journal of Environmental Analytical Chemistry, 96, 257-270.
Tang, C. Y.; Chong, T.; Fane, A. G. (2011) Colloidal interactions and fouling of NF and RO membranes: a review. Advances in colloid and interface science, 164, 126-143.
Tow, E. W.; Hartman, A. L.; Jaworowski, A.; Zucker, I.; Kum, S.; AzadiAghdam, M.; Blatchley, E. R.; Achilli, A.; Gu, H.; Urper, G. M.; Warsinger, D. M. (2021) Modeling the energy consumption of potable water reuse schemes. Water Research X, 13, 100126.
Tuzimski, T.; Petruczynik, A. (2020) Review of chromatographic methods coupled with modern detection techniques applied in the therapeutic drugs monitoring (TDM). Molecules, 25, 4026.
Van der Bruggen, B. (2018) Chapter 2 - Microfiltration, ultrafiltration, nanofiltration, reverse osmosis, and forward osmosis, in: Luis, P. (Ed.), Fundamental Modelling of Membrane Systems. Elsevier, pp. 25-70.
Van der Bruggen, B.; Schaep, J.; Wilms, D.; Vandecasteele, C. (1999) Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. Journal of Membrane Science, 156, 29-41.
Wang, Q.; Huang, N.; Cai, H.; Chen, X.; Wu, Y. (2023) Water strategies and practices for sustainable development in the semiconductor industry. Water Cycle, 4, 12-16.
Wang, W.; Chang, J.-S.; Show, K.-Y.; Lee, D.-J. (2022) Anaerobic recalcitrance in wastewater treatment: A review. Bioresource Technology, 363, 127920.
Wasswa, J.; Mladenov, N.; Pearce, W. (2019) Assessing the potential of fluorescence spectroscopy to monitor contaminants in source waters and water reuse systems. Environmental Science: Water Research & Technology, 5, 370-382.
Wenten, I. G.; Khoiruddin. (2016) Reverse osmosis applications: Prospect and challenges. Desalination, 391, 112-125.
WHO. (2006) WHO guidelines for the safe use of wasterwater excreta and greywater. World Health Organization.
Xiong, L.; Yan, P.; Chu, M.; Gao, Y.-Q.; Li, W.-H.; Yang, X.-L. (2018) A rapid and simple HPLC–FLD screening method with QuEChERS as the sample treatment for the simultaneous monitoring of nine bisphenols in milk. Food chemistry, 244, 371-377.
Yau, W. W.; Kirkland, J. J.; Bly, D. D.; Striegel, A. (2009) Modern size-exclusion liquid chromatography: practice of gel permeation and gel filtration chromatography. John Wiley & Sons.
Ying, G.-G. (2007) Analysis of endocrine disrupting chemicals and pharmaceuticals and personal care products in water, Handbook of water analysis. CRC Press, pp. 707-742.
Yoon, G.; Park, S.-M.; Yang, H.; Tsang, D. C. W.; Alessi, D. S.; Baek, K. (2018) Selection criteria for oxidation method in total organic carbon measurement. Chemosphere, 199, 453-458.
Yoon, Y.; Lueptow, R. M. (2005) Removal of organic contaminants by RO and NF membranes. Journal of Membrane Science, 261, 76-86.
Zhang, X.; Yang, Y.; Ngo, H. H.; Guo, W.; Wen, H.; Wang, X.; Zhang, J.; Long, T. (2021) A critical review on challenges and trend of ultrapure water production process. Science of The Total Environment, 785, 147254.