| 研究生: |
羅建欣 Row, Jian-Shin |
|---|---|
| 論文名稱: |
捷運化對臺鐵局路線容量之影響 The Effect of Rapid Transit Systematization on Railways Capacity of Taiwan Railways Administration(TRA) |
| 指導教授: |
鄭永祥
Cheng, Yung-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系碩士在職專班 Department of Transportation and Communication Management Science(on-the-job training program) |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 路線容量 、軌道路線容量評估模組 、模糊派翠網(Fuzzy Petri Nets) 、知識庫 |
| 外文關鍵詞: | Capacity, railway capacity evaluation module, Fuzzy Petri Nets, Knowledge Base. |
| 相關次數: | 點閱:192 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著國內高速鐵路營運、各都會區捷運系統啟用及運輸市場改變,臺灣鐵路管理局(以下稱臺鐵局)的角色正面臨轉型,因此「臺鐵捷運化」是目前持續進行的過程,其目的在於提升區域運輸服務,以達整體運輸系統整合。
為符合臺鐵捷運化之目標,在路線上新增數通勤車站並加開通勤列車,惟臺鐵局係屬快慢車混合經營且停站方式複雜之軌道系統,而施工計畫內容對於捷運化後的路線容量評估卻相當少見,因此,本研究將進一步分析臺鐵捷運化後路線容量之變化及可能提升路線容量之方法。
軌道路線容量係國內外學者、學術單位反覆研究的議題,在研究的方法上常見有班表壓縮法、數學規劃法及電腦模擬法,各方法都提供相當重要的資料及基礎,惟影響路線容量的因素眾多,應全面考量軌道系統列車種別、車站及站間相互影響的可能,以求結論接近事實。
因此,本研究在方法上以具備彈性、平行運算能力之模糊派翠網(Fuzzy Petri Nets)作為推論引擎,參考鐵路局行車規章並以從業人員的角度編寫知識庫以建構「軌道路線容量評估模組」,針對「臺中計畫」加以分析,提出臺中計畫通勤車站啟用後最適列車種組合及平均發車間隔,以及捷運化後軌道系統與系統中各節點的連動關係,希望能作為臺鐵局對於捷運化區間加開列車及施工單位設計之參考。
The policy of “Rapid Transit Systematization” has been executing for Taiwan Railways Administration(TRA)which is a traditional railroad .The subject of policy is making TRA underground or elevated and aims to integrate railway systems into a regional transport system, most important of all,the policy is building new Commuter Rail Stations in the line. The aim of this study is to analyze the the capacity of “Taichung Project” of the policy.
The capacity of railway transportation system is critical to the service quality and the railway capacity is not easy to analyze. Difficulties include the numerous interrelated factors about human,the complex structure of the railway and the vehicles. Therefore a tool that deals with these factors must be flexible. Thus, the method this study employed is Fuzzy Petri Nets (FPNs) which is flexible. FPNs is composed of Fuzzy Logics and Petri Nets, so it is not only flexible, but also could deal with uncertainty.This study proposed a tool named “railway capacity evaluation module” could solve the problems of the railway capacity.
This study described that the Taichung Project would not be the same as TRA Taipei corridor because the numbers of the station tracks in the Taichung Project are lesser than TRA Taipei corridor.
1. Armstrong, J., Preston, J., Potts, C., Bektas, T., & Paraskevopoulos, D. (2017). Addressing nodal constraints on railway capacity. Institution of Mechanical Engineers. Proceedings. Part F: Journal of Rail and Rapid Transit, 231(5), 637-646.
2. Cheng, Y. H., & Yang, L. A. (2009). A Fuzzy Petri Nets approach for railway traffic control in case of abnormality: Evidence from Taiwan railway system. Expert Systems with Applications, 36(4), 8040-8048.
3. Fay, A. (2000). A fuzzy knowledge-based system for railway traffic control. Engineering Applications of Artificial Intelligence, 13(6), 719-729.
4. Hasibuan, N. A., Yusmiarti, K., Waruwu, F. T., & Rahim, R. (2017). Expert systems with genetics probability. International Journal of Research In Science & Engineering, 3(2),112-116.
5. Iliasov, A., Lopatkin, I., & Romanovsky, A. (2013, September). The SafeCap platform for modelling railway safety and capacity. In International Conference on Computer Safety, Reliability, and Security, 130-137. Springer, Berlin, Heidelberg.
6. Lamorgese, L., & Mannino, C. (2015). An exact decomposition approach for the real-time train dispatching problem. Operations Research, 63(1), 48-64.
7. Lee, W. H., Tseng, S. S., & Tsai, S. H. (2009). A knowledge based real-time travel time prediction system for urban network. Expert Systems with Applications, 36(3), 4239-4247.
8. Liu, H. C., You, J. X., Li, Z., & Tian, G. (2017). Fuzzy Petri nets for knowledge representation and reasoning: A literature review. Engineering Applications of Artificial Intelligence, 60, 45-56.
9. Looney, C. G. (1988). Fuzzy Petri nets for rule-based decisionmaking. IEEE Transactions on Systems, Man, and Cybernetics, 18(1), 178-183.
10. Mapelsden, D., Hosking, J., & Grundy, J. (2002, February). Design pattern modelling and instantiation using DPML. In Proceedings of the Fortieth International Conference on Tools Pacific: Objects for internet, mobile and embedded applications (pp. 3-11). Sydney:Australian Computer Society, Inc..
11. Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4), 541-580.
12. Mussone, L., & Calvo, R. W. (2013). An analytical approach to calculate the capacity of a railway system. European Journal of Operationa lresearch, 228(1), 11-23.
13. Peterson, J. L. (1981). Petri net theory and the modeling of systems. Englewood Cliffs, N J: Prentice-Hall.
14. Riejos, F. A. O., Barrena, E., Ortiz, J. D. C., & Laporte, G. (2016). Analyzing the theoretical capacity of railway networks with a radial-backbone topology. Transportation Research Part A: Policy and Practice, 84, 83-92.
15. Samà, M., Meloni, C., D'Ariano, A., & Corman, F. (2015). A multi-criteria decision support methodology for real-time train scheduling. Journal of Rail Transport Planning & Management, 5(3), 146-162.
16. Sameni, M. K., Landex, A., & Preston, J. (2011). Developing the UIC 406 method for capacity analysis. In 4th International Seminar on Railway Operations Research. Italy Rome.
17. She, X., & Yang, J. (2016). Petri net based functional safety verification framework on rail control system. Metallurgical and mining industry, (2), 78-84.
18. Suraj, Z. (2012, September). Generalised Fuzzy Petri Nets for Approximate Reasoning in Decision Support Systems. In Louchka Popova-Zeugmann (Chair), Concurrency, Specification and Programming CS&P'2012. Proceedings of the 21th International Workshop on Concurrency, Specification and Programming, Berlin, Germany.
19. Vanit-Anunchai, S. (2010, June). Modelling railway interlocking tables using coloured petri nets. International Conference on Coordination Languages and Models , vol 6116, 137-151. Springer, Berlin, Heidelberg.
20. Zadeh, L. A. (1983). The role of fuzzy logic in the management of uncertainty in expert systems. Fuzzy sets and systems, 11(1-3), 199-227.
21. Žarnay, M. (2004, February). Use of Petri Net for Modelling of Traffic in Railway Stations. Proceedings of international conference Infotrans, Pardubice.
22. 王文俊. (2001)。 認識 Fuzzy。 新北市:全華科技圖書股份有限公司。
23. 交通部臺灣鐵路管理局(無日期)。 臺鐵統計資訊。 2017年10月26日,擷取自 http://www.railway.gov.tw/tw/CP.aspx?sn=7474。
24. 李允中、王小璠、蘇木春 (2008)。 模糊理論及其應用: 修訂版。 新北市: 全華圖書。
25. 李威勳(2009)。都會區交通路網整體效能提升之研究。國立交通大學博士論文,新竹市。
26. 張恩輔、黃笙玹、鍾志成 (2014年12月)。 臺鐵捷運化建設效益回顧與建議。林東盈(主持人),樂活運輸,臺灣更好行。中華民國運輸學會 103 年年會暨學術論文國際研討會,南投縣。
27. 陶治中、洪敏琛 (104年12月)。 隨機配翠網路應用於臺鐵捷運化之運行調度模擬模式建構與分析。 運輸計畫季刊, 第四卷(4), 333-372。
28. 馮正民、邱裕鈞 (2004)。 研究分析方法。 新竹: 建都文化。
29. 馮國臣 (2007)。 模糊理論: 基礎與應用。 臺北縣: 新文京開發。
30. 楊立安 (2007)。 臺灣鐵路運轉整理之研究。國立高雄第一科技大學運籌管理所碩士論文,高雄市。
31. 臺灣鐵路管理局 行車規章上冊。
32. 謝文隆、王家福. (1996),行車計劃。臺灣鐵路管理局。
33. 鍾志成、黃笙玹、李治綱、賴勇成、林國顯、劉昭榮 (2012)。 捷運系統路線容量分析-以臺北捷運高運量系統板南線為例。 運輸學刊, 24(1),113-134。