簡易檢索 / 詳目顯示

研究生: 林俊維
Lin, Chun-Wei
論文名稱: 減少晶圓於爐管 STI 退火製程的變形量之研究
A Study of Reducing Wafer Deformation in the STI Furnace Annealing Process
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 79
中文關鍵詞: IC製造爐管淺溝槽隔離田口方法晶圓變形
外文關鍵詞: IC manufacturing, Furnace, Shallow trench isolation (STI), Taguchi method, Wafer deformation
相關次數: 點閱:85下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 口試委員審定書 # 摘要 I EXTENDED ABSTRACT II Introduction III 致謝 XII 目錄 XIII 表目錄 XVI 圖目錄 XVII 第一章緒論 1 1.1前言 1 1.2研究動機與目的 5 1.3文獻回顧 5 1.4論文架構 11 第二章技術背景 13 2.1 IC製造簡介 13 2.2 IC製造用氧化層簡介 13 2.3絕緣層演進 14 2.4加熱製程簡介 17 2.5爐管簡介 17 2.5.1爐管分類 18 2.5.2爐管製程區分 20 2.6退火製程 22 2.7熱應力(Thermal stress) 22 2.7.1熱膨脹係數(Coefficient of Temperature Expansion, CTE) 23 2.7.2熱傳遞 23 第三章研究方法與模型建立 26 3.1有限元素模擬規劃 26 3.2實驗設計之方案構思 27 3.3有限元素模擬條件之設定 27 3.3.1定義模型物理特性 27 3.3.2定義模型幾何形狀 28 3.2.3網格切分 32 3.2.4定義邊界條件 32 3.4模型網格切割 37 3.5田口方法表格設計 38 3.6晶圓變形量測點 39 3.7晶圓變形翹曲量 40 第四章結果與討論 41 4.1退火製程整體變形量 41 4.1.1 L9田口方法實驗結果 41 4.1.2變形分布分析 47 4.1.3應力分布情形 51 4.1.4最佳化設計 52 4.2最佳化設計後之延續討論 56 4.2.1最佳化設計之延伸 56 4.2.2新晶舟設計方向 58 4.2.3 理想型對稱型晶圓支撐設計 58 4.2.4 理想型對稱型晶圓支撐設計模擬結果 60 4.2.5 Fingers設計改良 67 4.2.6 3 fingers 型晶圓支撐改良後的模擬結果 68 4.2.7 傳送機構之構思 70 4.3延伸設計之結果與討論 71 第五章結論與建議 75 5.1結論 75 5.2建議 76 參考文獻 77

    [1] W. Shockley, Electrons and holes in semiconductors : with applications to transistor electronics, New York: Van Nostrand, 1950.
    [2] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, pp. 1-4, 19 4 1965.
    [3] Y. Huang, “Analysis of the Impact of COVID-19 Epidemic on Tourism Industry Volatility Under the Background of Big Data,” Frontiers in Economics and Management, pp. 189-193, 1 11 2020.
    [4] B. McClean, “Worldwide IC Market Forecast to Top $500 Billion in 2021,” IC Insights, Inc, Arizona USA, 2021.
    [5] C. Hou, Physical Design for 3D Chiplets and System Integration, New York: Association for Computing Machinery, 2021.
    [6] B. McClean, “Taiwan Maintains Edge as Largest Base for IC Wafer Capacity,” IC Insights, Arizona USA, 2021.
    [7] A. Fischer, “Slip-free processing of 300 mm silicon batch wafers,” JOURNAL OF APPLIED PHYSICS, pp. 1545-1549, 18 1 2000.
    [8] T.Vodenitcharova, L.C.Zhang, I.Zarudi, Y.Yin, H.Domyo, T.Ho, M.Sato, “The effect of anisotropy on the deformation and fracture of sapphire wafers subjected to thermal shocks,” Journal of Materials Processing Technology, pp. 52-62, 1 11 2007.
    [9] Tai-su Park, Yu Gyun Shin, Han Sin Lee, Moon Han Park, Sang Dong Kwon, Ho Kyu Kang, Young Bum Koh, and Moon Yong Lee, “Correlation between gate oxide reliability and the profile of the trench top corner in Shallow Trench Isolation (STI) Top Corner in shallow xrench Isolation (STI),” IEEE, San Francisco, CA, USA, 1996.
    [10] Santosh Kumar Pani, Royston Hugh Hogan, Madhavan Pandurangan, Jian Zhang, and Pak Koesun, “Generation and elimination of silicon pitting for 300 mm CMOS process technologies,” Journal of Vacuum Science & Technology, pp. 2-5, 20 10 2017.
    [11] Leon van Dijk, Anne-Laure Charley, Maarten Stokhof, Ronald Otten, Sven Van Elshocht, Bert Jongbloed, Philippe Leray, Richard van Haren, “Detection and mitigation of furnace anneal induced distortions at the wafer edge,” 35th European Mask and Lithography Conference, Germany, 2019.
    [12] G.Rittera, P.McHugha, G.Wilsona, L.Funka, P.Zaumseilb, “Experimental verification of different slip generation models for 300 mm wafers processed in a fast ramp vertical furnace,” Microelectronic Engineering, pp. 225-236, 7 1999.
    [13] Tetsuo Fukuda and Ken-ichi Hikazutani, “The Analysis of Slip Extension and Induced Stress in 300 mm Diameter Wafers on Three-point Symmetrical Support,” 於 Japanese Journal of Applied Physics, Japan, 2000.
    [14] A.V. Aghabekyan; G.E. Ayvazyan; A.H. Vardanyan, “Distribution of slip dislocations in thermally deformed silicon wafers,” IEEE, Yugoslavia, 2002.
    [15] Tom Dunn; Chris Lee; Mark Tronolone; Aric Shorey, “Metrology for characterization of wafer thickness uniformity during 3DS-IC processing,” 於 IEEE, San Diego, 2012.
    [16] David Quirion; Maria Manna; Salvador Hidalgo; Giulio Pellegrini, “Manufacturability and Stress Issues in 3D Silicon Detector Technology at IMB-CNM,” Instituto de Microelectrónica de Barcelona, Barcelona, 2020.
    [17] T. Fukuda, “The Relationship between the Bending Stress in Silicon Wafers and the Mechanical Strength of Silicon Crystals,” Japanese Journal of Applied, pp. 3209-3215, 6 6 1995.
    [18] T. Fukuda, “The Analysis of Bending Stress and Mechanical Property of Ultralarge Diameter Silicon Wafers at High Temperatures,” Japanese Journal of Applied Physics, pp. 3799-3806, 7 7 1996.
    [19] D. Graf, U. Lambert, M. Brohl, A. Ehlert, R. Wahlich, and P. Wagner, “Improvement of Czochralski Silicon Wafers By High-Temperature Annealing,” Journal of The Electrochemical Society, Burghausen, 1995.
    [20] Fauzia Khatkhatay, Satish Singh, Stewart Wenner, Loyd Perrymore, Danda Acharya, Carlos Chacon, and Amit Gupta, “Gross substrate defects caused by thermal gradients in high temperature furnace processes,” IEEE, Saratoga Springs, 2018.
    [21] Michael Goldstein and Masaharu Watanabe, “450 mm Silicon Wafers Challenges - Wafer Thickness Scaling,” 於 ECS Transactions, Pennington, 2008.
    [22] B. Leroy and C. Plougonven, “Warpage of Silicon Wafers,” Journal of The Electrochemical Society, Pennington, 1980.
    [23] E.W.Hearn, E.H.teKaat and G.H.Schwuttke, “The closed boat: A new approach for semiconductor batch processing,” Microelectronics Reliability, pp. 61-62, 1976.
    [24] M. Akatsuka, K. Sueoka, H. Katahama and N. Adachi, “Calculation of Slip Length in 300 mm Silicon Wafers during Thermal Processes,” Journal of The Electrochemical Society, Pennington, 1999.
    [25] 蕭宏, 半導體製程技術導論(第三版), 新北市: 全華圖書 , 2014.
    [25] Shiladitya Chakravorty; Chihyun Jung; Garrett Szafman; Jaana Rajachidambaram; Bradley Savoy, “Satyajit Shinde, A novel approach to tool monitoring for furnace tools with dynamic recipe management,” IEEE, Saratoga Springs, 2018.
    [26] Sadao Nakashima; Hironobu Miya; Hidehiro Yanagawa; Nobuyuki Mise, “Vertical Furnaces for Thin Film Deposition and Annealing Contributing to Low-cost, High-performance Semiconductor Device Manufacturing,” Hitachi Review , pp. 193-197, 2011.
    [27] J. M. O’Connor, “Annealing furnace for III‐V semiconductor devices,” Review of Scientific Instruments, pp. 206-208, 23 10 1986.
    [28] A. Hasper; E. Oosterlaken; F. Huussen; T. Claasen-Vujcic, “Advanced manufacturing equipment: a vertical batch furnace for 300-mm wafer processing,” IEEE Micro, pp. 34-43, 10 1999.
    [29] K. Seshan, Handbook of Thin Film Deposition: Processes and Technologies, William Andrew, 2012.
    [30] S. M. George, “Atomic Layer Deposition,” 於 Atomic Layer Deposition, Finland, University of Helsinki, 2009, pp. 101-123.
    [31] Natale, Corrado Diamanti and Arnaldo D’Amico, “Emanuela Proietti, Roberto Diamanti and Arnaldo D’Amico ,Modeling of APCVD-Doped Silicon Dioxide Deposition Process by a Modular Neural Network,” IEEE Transactions on Semiconductor Manufacturing , pp. 109-115, 2 1999.
    [32] Y. A. Cengel, Heat and Mass Transfer in SI Units,, McGraw-Hill Education, 2015.
    [33] 嚴永民, “高壓半導體元件淺溝槽隔離製程之差排改善及良率提昇研究,” 國立陽明交通大學碩士論文, 2012.
    [34] 丁品維, “矽穿孔高頻電磁特性與熱應力耦合分析,” 國立成功大學碩士論文, 2020.
    [35] Yao Wei, Wang Jian and Liao Guangxuan, “Grid-independent Issue in Numerical Heat Transfer,” University of Science and Technology of China, Hefei, 2006.
    [36] 李輝煌, 田口方法: 品質設計的原理與實務, 高立圖書有限公司, 2011.
    [37] Veli-MattiAiraksinen, “Handbook of Silicon Based MEMS Materials and Technologies,” Handbook of Silicon Based MEMS Materials and Technologies (Second Edition), 2015, pp. 381-P390.
    [38] “TEL Costomer,” [線上]. Available: www.telcustomer.com.

    無法下載圖示 校內:2027-07-18公開
    校外:2027-07-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE