簡易檢索 / 詳目顯示

研究生: 林牧衡
Lin, Mu-Heng
論文名稱: 太空載具三維姿態自我感知與登陸決策
Spacecraft 6-DoF Pose Estimation and its Application for Unknown Environment Landing Decision Making
指導教授: 彭兆仲
Peng, Chao-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 62
中文關鍵詞: 姿態估測即時建圖定位技術點雲匹配曲面重建離群點偵測
外文關鍵詞: pose estimation, SLAM, ICP, surface reconstruction, MLS, outlier detection
相關次數: 點閱:153下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在太空任務之中,尤其是太空載具登陸的任務,姿態與位置資料對於太空船的動態控制而言是不可或缺的重要資訊。然而太空環境之下,一些常見的姿態資料的感測器如:磁力計、氣壓計與全球定位資訊系統(GPS),皆是無法使用的。為此,如何建立一個在排除上述感測器的資料之下,進行定位與姿態估測的方法以完成太空任務致關重大。而在此需求下,即時建圖定位(SLAM)技術是其中一個可以加以參考並應用的技術。在外部感測器的輔助之下,例如:光達、雷達與視覺相機,即時進行資料的掃瞄並與全域地圖進行匹配,來推估自身所處之位置與姿態,來達成無磁力計、無氣壓計以及無GPS之下的定位與姿態估測。此外,本研究更進一步考慮到登陸點的選取與決策,藉由曲面重建的技術並利用平面的特性,搜尋出平坦、足夠廣闊與傾斜程度低的區域。而當姿態資料與登陸地點均具備的時候,太空載具便可依循該資料進行登陸任務。最終達成本研究-太空載具三圍姿態資料與登錄決策之目標。

    For a spacecraft acting an astronautic mission, the information of attitude and position is doubtlessly necessary for controlling the motion of spacecraft, especially the mission of landing. However, in the environment of outer space, sensors for motion control in general aerial vehicle such as magnetometer, GPS and pressure altimeter are generally unavailable. With such requirement, the research of estimating attitude and position without those sensors is crucial. In order to reach such target, the technique of simultaneous localization and mapping (SLAM) can make contribution. With the use of sensors like LiDAR, Radar or vision, attitude and position can be estimated through registration of local scan data and global map data. Furthermore, apart from pose estimation and localization, the decision of landing zone is also considered in this research. With the application of surface reconstruction, the region satisfying the requirement of planar, sufficiently wide and lowly tilted can be searched out through the properties of plane. Once the state of motion and the landing zone are ready, the spacecraft may start the landing mission through above information, to achieve the target of spacecraft 6-DoF pose estimation and its application for unknown environment landing decision making.

    CONTENTS ABSTRACT I 中文摘要 II ACKNOWLEDGMENT III CONTENTS IV LIST OF TABLES V LIST OF FIGURES VI CHAPTER 1 INTRODUCTION 1 1.1 Motivation and Objective 1 1.2 Literature Survey 2 1.3 Structure of this Dissertation and Contribution 6 CHAPTER 2 METHODOLOGY 8 2.1 Data Preprocessing 10 2.1.1 The K-distance Outlier Definition 11 2.1.2 Local Outlier and Local Outlier Factor (LOF) 12 2.2 Iterative Closest Point (ICP) 13 2.2.1 Mapping 14 2.2.2 Pose Estimation and Localization 16 2.3 Landing Decision Making 18 2.3.1 Surface Reconstruction 18 2.3.2 The PCA normal derivation and clustering method 19 CHAPTER 3 PROBLEM FORMULATION AND OPTIMAL SOLUTION 22 3.1 Iterative Closest Points 22 3.1.1 The derivation of T 22 3.1.2 The derivation of R 24 3.2 Moving Least Square 26 3.3 Principal Component Analysis (PCA) 28 CHAPTER 4 EXPERIMENT 30 4.1 Equipment 30 4.1.1 Hardware of the 5-axes Simulation Platform 30 4.1.2 Software of the 5-axes Simulation Platform 33 4.2 Outlier Detection 36 4.3 Map Stitching 39 4.4 Pose Estimation and Localization 42 4.5 Landing Decision Making 45 4.5.1 Surface Reconstruction 45 4.5.2 The PCA normal derivation and clustering method 47 CHAPTER 5 ANALYSIS 49 5.1 Map Stitching 49 5.2 Pose Estimation and Localization 50 CHAPTER 6 CONCLUSION 58 6.1 Conclusion 58 6.2 Future Progress 59 REFERENCES 60 APPENDIX 62

    REFERENCES
    [1] T. J. Chong, X. J. Tang, C. H. Leng, M. Yogeswaran, O. E. Ng, and Y. Z. Chong, "Sensor Technologies and Simultaneous Localization and Mapping (SLAM)," Procedia Computer Science, vol. 76, pp. 174-179, 2015/01/01/ 2015.
    [2] C. Cadena et al., "Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age," IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1309-1332, 2016.
    [3] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, "Monte Carlo localization for mobile robots," in Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), 1999, vol. 2, pp. 1322-1328 vol.2.
    [4] J. Levinson, M. Montemerlo, and S. Thrun, Map-Based Precision Vehicle Localization in Urban Environments. 2007.
    [5] S. Hening, C. A. Ippolito, K. S. Krishnakumar, V. Stepanyan, and M. Teodorescu, "3D LiDAR SLAM Integration with GPS/INS for UAVs in Urban GPS-Degraded Environments," in AIAA Information Systems-AIAA Infotech @ Aerospace (AIAA SciTech Forum: American Institute of Aeronautics and Astronautics, 2017.
    [6] A. I. Mourikis and S. I. Roumeliotis, "A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation," in Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007, pp. 3565-3572.
    [7] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, "FastSLAM: a factored solution to the simultaneous localization and mapping problem," presented at the Eighteenth national conference on Artificial intelligence, Edmonton, Alberta, Canada, 2002.
    [8] M. Montemerlo, S. Thrun, D. Roller, and B. Wegbreit, "FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges," presented at the Proceedings of the 18th international joint conference on Artificial intelligence, Acapulco, Mexico, 2003.
    [9] P. J. Besl and N. D. McKay, "A method for registration of 3-D shapes," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239-256, 1992.
    [10] A. Diosi and L. Kleeman, "Laser scan matching in polar coordinates with application to SLAM," in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, pp. 3317-3322.
    [11] P. Biber and W. Strasser, "The normal distributions transform: a new approach to laser scan matching," in Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), 2003, vol. 3, pp. 2743-2748 vol.3.
    [12] T. Takubo, T. Kaminade, Y. Mae, K. Ohara, and T. Arai, "NDT scan matching method for high resolution grid map," in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 1517-1522.
    [13] F. Wang and Z. Zhao, "A survey of iterative closest point algorithm," in 2017 Chinese Automation Congress (CAC), 2017, pp. 4395-4399.
    [14] M. Greenspan and M. Yurick, "Approximate k-d tree search for efficient ICP," in Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings., 2003, pp. 442-448.
    [15] J. L. Bentley, "Multidimensional binary search trees used for associative searching.," Commun. ACM, vol. 18, no. 9, pp. 509-517, 1975.
    [16] K.-L. Low, Linear Least-Squares Optimization for Point-to-Plane ICP Surface Registration. 2004.
    [17] X. Ge and T. Wunderlich, "Surface-based matching of 3D point clouds with variable coordinates in source and target system," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 111, pp. 1-12, 2016/01/01/ 2016.
    [18] M. Magnusson, A. Nuchter, C. Lorken, A. Lilienthal, and J. Hertzberg, Evaluation of 3D Registration Reliability and Speed - A Comparison of ICP and NDT. 2009, pp. 3907-3912.
    [19] M. M. Breunig, H.-P. Kriegel, R. T. Ng, #246, and r. Sander, "LOF: identifying density-based local outliers," SIGMOD Rec., vol. 29, no. 2, pp. 93-104, 2000.
    [20] E. M. Knorr and R. T. Ng, "Algorithms for Mining Distance-Based Outliers in Large Datasets," presented at the Proceedings of the 24rd International Conference on Very Large Data Bases, 1998.
    [21] M. Berger et al., "State of the Art in Surface Reconstruction from Point Clouds," 2014.
    [22] S. Fleishman, D. Cohen-Or, Cl, #225, and u. T. Silva, "Robust moving least-squares fitting with sharp features," presented at the ACM SIGGRAPH 2005 Papers, Los Angeles, California, 2005.
    [23] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva, "Computing and rendering point set surfaces," IEEE Transactions on Visualization and Computer Graphics, vol. 9, no. 1, pp. 3-15, 2003.
    [24] Z.-Q. Cheng, Y.-Z. Wang, B. Li, K. Xu, G. Dang, and S.-Y. Jin, "A survey of methods for moving least squares surfaces," presented at the Proceedings of the Fifth Eurographics / IEEE VGTC conference on Point-Based Graphics, Los Angeles, CA, 2008.
    [25] O. Sorkine-Hornung and M. Rabinovich, "Least-Squares Rigid Motion Using SVD," January 16 2017. Department of Computer Science, ETH Zurich
    [26] P. Lancaster and K. Salkauskas, Surface Generated by Moving Least Square Methods. 1981, pp. 141-141.
    [27] A. Nealen, An As-Short-As-Possible Introduction to the Least Squares, Weighted Least Squares and Moving Least Squares Methods for Scattered Data Approximation and Interpolation. 2004.
    [28] D. Levin, "Mesh-Independent Surface Interpolation," Berlin, Heidelberg, 2004: Springer Berlin Heidelberg, pp. 37-49.

    下載圖示 校內:2021-09-04公開
    校外:2022-09-04公開
    QR CODE