簡易檢索 / 詳目顯示

研究生: 机啟成
Chi, Chi-Cheng
論文名稱: 形狀記憶合金驅動生醫用高分子微夾持系統之發展
Development of Shape-Memory-Alloy Actuated Biomedical Polymer Micro-Gripper
指導教授: 張仁宗
Chang, R.-J.
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 74
中文關鍵詞: 遲滯模型微致動器生醫用微夾持器
外文關鍵詞: micro-actuator, biomedical micro-gripper, hysteresis model
相關次數: 點閱:76下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   「光機電系統控制研究室」歷年於微夾持系統上之研究,已開發出形狀記憶合金致動高分子微夾持器,本文根據該研究經驗與資源,整合生醫顯微鏡、形狀記憶合金致動器而完成生醫環境使用之微夾持器。本文在設計與製造流程確認後,即進行夾持器之分析以利於致動器之選擇,接著進行致動器之分析與靜態建模,並探討其正確性。最後夾持器經過測試,可於水面下夾持與搬運23-35μm之粒子,完成生醫用微夾持器之設計。

      According to the researches of micro-gripping system in the “OME System Lab” in recent years, a polymer micro gripper actuated by shape-memory alloy has been developed. This study is based on their experiences and resources, and integrates the biomedical microscope and SMA actuator to accomplish a micro-gripper which can work in the biomedical environment. After confirming the procedure of design and manufacture of micro-gripper, we analyzed it for choosing micro-actuator. Then we analyzed the actuator and created a static hysteresis model of it. The repeatability of open-loop control is discussed. Finally, we test the functions of the designed gripper system. The test result reveals that the gripper system can grasp a spherical particle with diameter 23-35μm under water.

    中文摘要 I ABSTRACT II 誌謝 III 表目錄 VII 圖目錄 VIII 符號表 XI 第一章 序論 1 1-1引言 1 1-2文獻回顧 1 1-2.1生醫用之微操縱器簡介 1 1-2.2生醫用握持式微操縱器 3 1-2.3微致動器 8 1-3研究目標 8 1-4研究方法 9 1-5本文架構 9 第二章 夾持系統之實現 11 2-1 微夾持器之實現 11 2-1.1 微夾持器改進與設計 11 2-1.2 準分子雷射微細加工 13 2-2 形狀記憶合金致動器之實現 15 2-2.1 微致動器之改良 15 2-2.2 圓弧形致動器之製作 16 2-3 微夾持器與致動器之組裝 17 第三章 高分子微夾持器建模與分析 18 3-1 高分子材料 18 3-1.1 高分子材料簡介 18 3-1.2 材料性質量測 19 3-2 微夾持器建模 22 3-2.1 位移增益 22 3-2.2 夾持器等效剛度 26 3-3 有限元素分析 27 3-3.1 位移增益 28 3-3.2 夾持器等效剛度 29 3-3.3 握持分析 32 第四章 形狀記憶合金微致動器建模與測試 33 4-1 形狀記憶合金簡介 33 4-2 暫態響應分析 35 4-2.1 微致動器控制電路 36 4-2.2 影像量測方法 38 4-2.3 暫態分析 40 4-3 形狀記憶合金模型 42 4-3.1 形狀記憶合金模型文獻回顧 42 4-3.2 遲滯模型 Preisach Model 44 4-3.3 形狀記憶合金主遲滯環模型建立 48 4-3.4 模型驗證與分析 53 第五章 功能測試 57 5-1 負重測試 57 5-2 生醫環境測試 58 5-2.1 液面下開闔測試 59 5-2.2 液面下夾持測試 60 5.2.3 夾持進出水面測試 63 5-2.4液面下搬運測試 64 第六章 結論與未來展望 67 6-1 結論 67 6-2 未來展望 68 參考文獻 69 附錄 72 自述 74

    1. Fumihito ARAI, “Micro Tri-axial Force sensor for 3D Bio-Micromanipulator,”
    International Conference on Robotics & Automation, IEEE, pp.2744-2749, 1999.
    2. Gary J. Brouhard, “Advanced Optical Tweezers for the Study of Cellular and
    Molecular Biomechanics,” Transactions on Biomedical Engineering, IEEE,
    pp.125-121, 2003.
    3. Fumihito Arai, “High speed random separation of microobject in microchip by
    laser manipulator and dielectrophoresis,” IEEE, pp.727-732, 2000.
    4. Yosuke Kawase, “Effect of Partial Incision of the Zona Pellucida by
    Piezo-Micromanipulator for In Vitro Fertilization Using Frozen-Thawed Mouse
    Spermatozoa on the Developmental Rate of Embryos Transferred at the 2-Cell
    Stage,” Biological of Reproduction, pp.381-385, 2002.
    5. Fumito Imura, “Development of nano-surgery system for cell organelles,”
    SICE, pp.3236-3241, 2002.
    6. Fumihito Arai, “3D bio-micromanipulation (bilateral control system using
    micro tri-axial force sensor),” Micromechanics and Human Science, IEEE,
    pp.71-77, 1999.
    7. Michael Gauthier, “Behavior of a magnetic manipulator of biological
    objects,” International Conference on Robotics & Automation, IEEE,
    pp.3199-3204, 2002.
    8. Chang-Jin Kim, “Silicon-processed overhanging microgripper,” Journal of
    Microelectromechanical Systems, Vol 1. , pp.31-36, 1992.
    9. Li Luming, “Micromanipulator System in MEMS,” Proceeding of The IEEE
    International Conference on Industrial Technology, pp.665-668, 1996.
    10. Tamio Tanikawa, “Development of a micro-manipulation system having a
    two-fingered micro-hand,” IEEE Tansactions on Robotics and Automation,
    Vol 15, 1999.
    11. Jerry Ok, “Pneumatically driven microcage for micro-objects in biological
    liquid,” Proceedings of IEEE MEMS, pp.459-463, 1999.
    12. Edwin W. H. Jager, “Microrobots for Micrometer-Size Objects in Aqueous Media
    Potential Tools for Single-Cell Manipulation,” Science, Vol 288, 2000.
    13. Olivier Millet, “Micro gripper driven by SDAs coupled to an amplification
    mechanism,” The 12th International Conference on Solid States Sensors,
    Actuators and Microsystems, Boston, pp.280-283, 2003.
    14. Jennifer W. L. Zhou, “MEMS-fabricated ICPE grippers for aqueous
    applications,” The 12th International Conference on Solid States Sensors,
    Actuators and Microsystems, Boston, pp.556-559, 2003.
    15. Deok-Ho Kim, “Development of a piezoelectric polymer-based sensorized
    microgripper for microassembly and micromanipulation,” Proceeding of the
    2003 IEEE/RSJ, Conference on Intelligent Robotics and Systems, pp.1864-1869,
    2003.
    16. Joel Agnus, “Description and performances of a four-degrees-of-freedom
    piezoelectric gripper,” Proceeding of the 5th IEEE International Symposium
    on Assembly and Task Planning, pp.66-71, 2003.
    17. Ho-Yin Chan, “A thermally actuated polymer micro robotic gripper for
    manipulation of biological cells,” Proceedings of the 2003 IEEE
    International Conference on Robotics & Automation, pp288-293, IEEE.
    18. K.K. Tan, “Computer-controlled piezoactuator for cell manipulation,”
    IEEE Proc. Nanobiotechnol, Vol 150, pp.15-20, 2003.
    19. Micheal Y. F. Kwok, “Micro Nafion Actuators for Cellular Motion,”
    ISER, pp471-480, 2000.
    20. 張景堯,「形狀記憶合金驅動高分子微夾持系統之發展」,國立成功大學機械工程學
    系碩士論文,中華民國九十二年六月。
    21. J. M. Paros, “How to design flexure hinges,” Machine design, vol.36 ,
    pp151-156, 1965.
    22. 馮瑨,「微型撓性機械材料特性量測研究」,國立成功大學機械系大專生參與專題研
    究計畫研究成果報告,中華民國八十九年二月。
    23. 馮瑨,「微作業端效器之設計製造與測試」,國立成功大學機械工程學系碩士論文,
    中華民國八十九年六月。
    24. Ian W. Hunter, Serge Lafontaine, “Fast Reversible NiTi Fibers for Use in
    Microrobotics,” IEEE, pp166-170, 1991.
    25. Koji Ikuta, “Mathematical Model And Experimental Verification of Shape
    Memory Alloy for Design Micro Actuator,” IEEE, pp103-108, 1991.
    26. Daniel R. Madill, “Modeling and L2-Stability of a Shape Memory Alloy
    Position Control System,” IEEE Transaction on Control System Technology,
    Vol.6, pp.473-481, 1998.
    27. R. Andrew Russell, “Improving the Response of SMA Actuators,” IEEE
    International Conference on Robotics Automation, pp2299-2304, 1995.
    28. R.B. Gorbet, “Preisach Model Identification of a Two-Wire SMA Actuator,”
    International Conference on Robotics and Automation, Proceedings of the 1998
    IEEE, pp.2161-2167, 1998.
    29. Byung-Jun Choi, “Preisach Model of SMA Actuators Using Proportional
    Relationship of Major Loop of Hysteresis,” International Conference on
    Intelligent Robots and Systems, IEEE,pp.1987-1991, 2002.
    30. Tadahiro Hasegqwa, Sumiko Majima, “A control system to compensate the
    hysteresis by Preisach model on SMA actuator,” International Symposium on
    Micromechanics and Human Science, IEEE, PP171-176, 1998.
    31. Sumiko Majima, “Modeling of Shape Memory Alloy Actuator and Tracking Control
    System with the Model,” IEEE Transaction and Control System Technology,
    pp.54-59, 2001.
    32. Isaak D. Mayergoyz, “Mathematic Models of Hysteresis (Invited), IEEE
    Transactions on Magnetics, pp.603-608, 1986.
    33. Oleg Rasskazov, “System with hysteresis,”
    http://phys.ucc.ie/~oll/hysteresis/.

    下載圖示 校內:立即公開
    校外:2004-08-03公開
    QR CODE