| 研究生: |
机啟成 Chi, Chi-Cheng |
|---|---|
| 論文名稱: |
形狀記憶合金驅動生醫用高分子微夾持系統之發展 Development of Shape-Memory-Alloy Actuated Biomedical Polymer Micro-Gripper |
| 指導教授: |
張仁宗
Chang, R.-J. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 遲滯模型 、微致動器 、生醫用微夾持器 |
| 外文關鍵詞: | micro-actuator, biomedical micro-gripper, hysteresis model |
| 相關次數: | 點閱:76 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
「光機電系統控制研究室」歷年於微夾持系統上之研究,已開發出形狀記憶合金致動高分子微夾持器,本文根據該研究經驗與資源,整合生醫顯微鏡、形狀記憶合金致動器而完成生醫環境使用之微夾持器。本文在設計與製造流程確認後,即進行夾持器之分析以利於致動器之選擇,接著進行致動器之分析與靜態建模,並探討其正確性。最後夾持器經過測試,可於水面下夾持與搬運23-35μm之粒子,完成生醫用微夾持器之設計。
According to the researches of micro-gripping system in the “OME System Lab” in recent years, a polymer micro gripper actuated by shape-memory alloy has been developed. This study is based on their experiences and resources, and integrates the biomedical microscope and SMA actuator to accomplish a micro-gripper which can work in the biomedical environment. After confirming the procedure of design and manufacture of micro-gripper, we analyzed it for choosing micro-actuator. Then we analyzed the actuator and created a static hysteresis model of it. The repeatability of open-loop control is discussed. Finally, we test the functions of the designed gripper system. The test result reveals that the gripper system can grasp a spherical particle with diameter 23-35μm under water.
1. Fumihito ARAI, “Micro Tri-axial Force sensor for 3D Bio-Micromanipulator,”
International Conference on Robotics & Automation, IEEE, pp.2744-2749, 1999.
2. Gary J. Brouhard, “Advanced Optical Tweezers for the Study of Cellular and
Molecular Biomechanics,” Transactions on Biomedical Engineering, IEEE,
pp.125-121, 2003.
3. Fumihito Arai, “High speed random separation of microobject in microchip by
laser manipulator and dielectrophoresis,” IEEE, pp.727-732, 2000.
4. Yosuke Kawase, “Effect of Partial Incision of the Zona Pellucida by
Piezo-Micromanipulator for In Vitro Fertilization Using Frozen-Thawed Mouse
Spermatozoa on the Developmental Rate of Embryos Transferred at the 2-Cell
Stage,” Biological of Reproduction, pp.381-385, 2002.
5. Fumito Imura, “Development of nano-surgery system for cell organelles,”
SICE, pp.3236-3241, 2002.
6. Fumihito Arai, “3D bio-micromanipulation (bilateral control system using
micro tri-axial force sensor),” Micromechanics and Human Science, IEEE,
pp.71-77, 1999.
7. Michael Gauthier, “Behavior of a magnetic manipulator of biological
objects,” International Conference on Robotics & Automation, IEEE,
pp.3199-3204, 2002.
8. Chang-Jin Kim, “Silicon-processed overhanging microgripper,” Journal of
Microelectromechanical Systems, Vol 1. , pp.31-36, 1992.
9. Li Luming, “Micromanipulator System in MEMS,” Proceeding of The IEEE
International Conference on Industrial Technology, pp.665-668, 1996.
10. Tamio Tanikawa, “Development of a micro-manipulation system having a
two-fingered micro-hand,” IEEE Tansactions on Robotics and Automation,
Vol 15, 1999.
11. Jerry Ok, “Pneumatically driven microcage for micro-objects in biological
liquid,” Proceedings of IEEE MEMS, pp.459-463, 1999.
12. Edwin W. H. Jager, “Microrobots for Micrometer-Size Objects in Aqueous Media
Potential Tools for Single-Cell Manipulation,” Science, Vol 288, 2000.
13. Olivier Millet, “Micro gripper driven by SDAs coupled to an amplification
mechanism,” The 12th International Conference on Solid States Sensors,
Actuators and Microsystems, Boston, pp.280-283, 2003.
14. Jennifer W. L. Zhou, “MEMS-fabricated ICPE grippers for aqueous
applications,” The 12th International Conference on Solid States Sensors,
Actuators and Microsystems, Boston, pp.556-559, 2003.
15. Deok-Ho Kim, “Development of a piezoelectric polymer-based sensorized
microgripper for microassembly and micromanipulation,” Proceeding of the
2003 IEEE/RSJ, Conference on Intelligent Robotics and Systems, pp.1864-1869,
2003.
16. Joel Agnus, “Description and performances of a four-degrees-of-freedom
piezoelectric gripper,” Proceeding of the 5th IEEE International Symposium
on Assembly and Task Planning, pp.66-71, 2003.
17. Ho-Yin Chan, “A thermally actuated polymer micro robotic gripper for
manipulation of biological cells,” Proceedings of the 2003 IEEE
International Conference on Robotics & Automation, pp288-293, IEEE.
18. K.K. Tan, “Computer-controlled piezoactuator for cell manipulation,”
IEEE Proc. Nanobiotechnol, Vol 150, pp.15-20, 2003.
19. Micheal Y. F. Kwok, “Micro Nafion Actuators for Cellular Motion,”
ISER, pp471-480, 2000.
20. 張景堯,「形狀記憶合金驅動高分子微夾持系統之發展」,國立成功大學機械工程學
系碩士論文,中華民國九十二年六月。
21. J. M. Paros, “How to design flexure hinges,” Machine design, vol.36 ,
pp151-156, 1965.
22. 馮瑨,「微型撓性機械材料特性量測研究」,國立成功大學機械系大專生參與專題研
究計畫研究成果報告,中華民國八十九年二月。
23. 馮瑨,「微作業端效器之設計製造與測試」,國立成功大學機械工程學系碩士論文,
中華民國八十九年六月。
24. Ian W. Hunter, Serge Lafontaine, “Fast Reversible NiTi Fibers for Use in
Microrobotics,” IEEE, pp166-170, 1991.
25. Koji Ikuta, “Mathematical Model And Experimental Verification of Shape
Memory Alloy for Design Micro Actuator,” IEEE, pp103-108, 1991.
26. Daniel R. Madill, “Modeling and L2-Stability of a Shape Memory Alloy
Position Control System,” IEEE Transaction on Control System Technology,
Vol.6, pp.473-481, 1998.
27. R. Andrew Russell, “Improving the Response of SMA Actuators,” IEEE
International Conference on Robotics Automation, pp2299-2304, 1995.
28. R.B. Gorbet, “Preisach Model Identification of a Two-Wire SMA Actuator,”
International Conference on Robotics and Automation, Proceedings of the 1998
IEEE, pp.2161-2167, 1998.
29. Byung-Jun Choi, “Preisach Model of SMA Actuators Using Proportional
Relationship of Major Loop of Hysteresis,” International Conference on
Intelligent Robots and Systems, IEEE,pp.1987-1991, 2002.
30. Tadahiro Hasegqwa, Sumiko Majima, “A control system to compensate the
hysteresis by Preisach model on SMA actuator,” International Symposium on
Micromechanics and Human Science, IEEE, PP171-176, 1998.
31. Sumiko Majima, “Modeling of Shape Memory Alloy Actuator and Tracking Control
System with the Model,” IEEE Transaction and Control System Technology,
pp.54-59, 2001.
32. Isaak D. Mayergoyz, “Mathematic Models of Hysteresis (Invited), IEEE
Transactions on Magnetics, pp.603-608, 1986.
33. Oleg Rasskazov, “System with hysteresis,”
http://phys.ucc.ie/~oll/hysteresis/.