簡易檢索 / 詳目顯示

研究生: 王奕迪
Wang, Yi-Ti
論文名稱: 薄膜熱膨脹與熱擴散係數量測分析研究
Measurement and Analysis of Thermal expansion Coefficient and Thermal Diffusivity of Thin Film Specimens
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 131
中文關鍵詞: 薄膜熱膨脹係數熱擴散係數
外文關鍵詞: thin film, thermal diffusivity, coefficient of thermal expansion
相關次數: 點閱:109下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對微奈米尺度的薄膜熱膨脹及熱擴散係數進行量測與分析研究。對於薄膜熱膨脹係數量測方法,在以往的研究中往往都對材料有許多的限制,如結晶性、導電性等,而沒有一個簡易且通用的量測方法。本研究以表面粗度儀量測試片在不同溫度下的表面形貌,利用試片在不同溫度下,表面形貌的曲率半徑變化,計算薄膜的熱膨脹係數。此方法是利用材料受溫熱膨脹的特性,薄膜與基板熱膨脹係數不同而導致結構彎曲而改變曲率半徑,此量測方法對於材料性質並無限制,是一種簡單快速的量測方法。
    薄膜熱擴散係數係以溫度振盪法結合變頻率方式進行量測,以薄膜兩不同界面溫度變化的相位差推導出熱擴散係數。實驗上以致冷片(Peltier)為熱源結合方波電路產生溫度振盪,以熱電偶量測薄膜不同界面的溫度變化,並將熱電偶的量測訊號以鎖相放大器(Lock-in Amplifier)進行分析,得到薄膜不同界面間溫度變化的相位差。實驗上的誤差如熱飄移(Thermal drift),可以鎖相放大器抓取特定頻率的訊號克服;因熱電偶接觸狀況不同造成的誤差,透過變頻率實驗方法,在資料處理上,以線性回歸方法找出頻率-相位差的關係,即可找出熱電偶接觸狀況對實驗所造成的影響。透過以上的實驗及分析方法即可求出薄膜的熱擴散係數。

    This research focuses on the thermal expansion coefficient and thermal diffusivity of thin film specimens. In the past studies, without a simple and versatile method of measurement, the methods of measuring the thermal expansion coefficient are many restrictions on the material often, such as crystallinity and electric conductivity. In the present study, the thermal expansion coefficient can be estimated by measuring the change of the radius of curvature of the thin film specimens surface morphology under difference temperature. With taking advantage of the material properties, the difference of the thermal expansion coefficients between thin film structure and the substrate will cause the whole structure bending and changing the radius of curvature. The method is not restricted to material, is a simple and fast method of measurement.
    To measure the thermal diffusivity, the heat conduction solution in the multi-layered specimens is developed to be one-dimensional and varying with the amplitude and frequency of the oscillating temperature imposed. The phase lag of temperature due to the difference layers of the thin film can be expressed as a function of film thickness, oscillating temperature frequency, and thermal diffusivity. Experimentally, with a varying frequency of the oscillating temperature imposed by the peltier beneath the specimen’s substrate, the thermocouples are placed to have their tip in contact with the top surfaces of two adjacent layers individually in order to measure temperature signal of these two surfaces. Then the measured signals are analyzed by Lock-in amplifier to obtain the temperature phase lag. This phase lag value is then substituted into the previously developed phase lag expression to determine the thermal diffusivity of the thin film specimen.

    摘要 I Abstract III 誌謝 V 目錄 VI 表目錄 IX 圖目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻回顧 3 1.3.1 熱膨脹係數量測方法 3 1.3.2 熱傳導係數量測方法 10 1.4 研究內容 18 第二章 理論分析 19 2.1 熱膨脹係數量測方法理論分析 19 2.1.1 Analysis of Bi-metal Thermostats 19 2.1.2 奈米壓痕試驗理論 23 2.2 熱擴散係數量測方法理論分析 27 第三章 實驗規劃 30 3.1 熱膨脹係數量測實驗架構 30 3.1.1 實驗試件製備 30 3.1.2 實驗設備與量測流程 33 3.2 熱擴散係數量測實驗架構 48 3.2.1 實驗試件製備 48 3.2.2 實驗設備 50 3.2.3 實驗流程 59 第四章 結果與討論 65 4.1 熱膨脹實驗結果與討論 65 4.1.1 彈性模數量測結果 65 4.1.2 熱膨脹係數量測結果 72 4.1.3 基板對實驗的影響 102 4.2 熱擴散實驗結果與討論 105 4.2.1 第三根熱電偶量測位置影響 119 4.2.2 薄膜表面粗糙度對熱擴散係數的影響 122 第五章 結論與未來展望 125 5.1 熱膨脹係數量測結論 125 5.2 熱擴散係數量測結論 126 5.3 未來展望 127 參考文獻 128

    1. Timoshenko, S. "Analysis of bi-metal thermostats." J. Opt. Soc. Am 11.3 (1925): 233-255.
    2. M. Miyagi and N. Funakoshi, “ Internal stress and thermal expansion
    coefficient of Gda-Si films”, Jpn. J. Appl. Phys., 20, pp. 289-290, 1981.
    3. 田春林 ,“光學薄膜應力與熱膨脹係數量測之研究”,國立中央大學光電科學研究所博士論文,2000.
    4. Y. Kuru, M. Wohlschlögel, U. Welzel, E. J and Mittemeijer , “Coefficients of Thermal Expansion of Thin Metal Films Investigated by Non-ambient X-ray Diffraction Stress Analysis”, Surface and Coatings Technology, Vol.202, No.11,pp.2306-2309, 2008.
    5. S. H. Lee, and D. Kwon. "The analysis of thermal stress effect on electromigration failure time in Al alloy thin-film interconnects." Thin Solid Films 341.1 (1999): 136-139.
    6. H. V. Tiwary, and G. D. Sao. "An electrical method for the measurement of thermal expansion of thin films." Journal of Physics E: Scientific Instruments 14.12 (1981): 1378.
    7. J. M. Gere and B. J. Goodno “Mechanics of Materials”,Cengage Learning,7th edition,2009
    8. W. L. Fang, H. C. Tsai, and C. Y. Lo. "Determining thermal expansion coefficients of thin films using micromachined cantilevers." Sensors and Actuators A: Physical 77.1 (1999): 21-27.
    9. D. G. Cahill "Heat transport in dielectric thin films and at solid-solid interfaces."Microscale Thermophysical Engineering 1.2 (1997): 85-109.
    10. D. G. Cahill,” HEAT TRANSPORT IN DIELECTRIC THIN FILMS AND AT SOLID-SOLID INTERFACES”, Microscale Thermophysical. Eng., pp.85-109, 1997
    11. E. Jansen and E. Obermeier,” Thermal conductivity measurements on thin films based on micromechanical devices”, J. Micromech. Microeng., 6,pp. 118–121,1996
    12. O. W. Keading, H. Shurk, and K. E. Goodson, Thermal Conduction in Me tallized Silicon-Dioxide Laye rs on Silicon, Appl. Phys. Lett., 65, pp. 1629-1631, 1994
    13. Y. C. Tai, C. H. Mastrangelo, and R. S. Muller. "Thermal conductivity of heavily doped low‐pressure chemical vapor deposited polycrystalline silicon films." Journal of Applied Physics 63.5 (1988): 1442-1447.
    14. D. G. Cahill,” Thermal conductivity measurement from 30 to 750 K: the 3ω method”, J. Appl. Phys., Vol.91, pp.802-808,1989
    15. S. M. Lee, and D. G. Cahill. "Heat transport in thin dielectric films." Journal of Applied Physics 81.6 (1997): 2590-2595. 3
    16. A. J. Ångstrom, Ann. Phys. , vol. 114, pp. 513, 1861
    17. T. Yagi, K. Tamano, and Y. Sato,” Analysis on thermal properties of tin doped indium oxide films by picosecond thermoreflectance measurement”, J. Vac. Sci. Technol.A,23(4), 2005
    18. A. Salazar, A. Stinchez-Lavega, and J. Ferntndez,”Thermal diffusivity measurements in solids by the ‘‘mirage’’,technique: Experimental results”, J. Appl. Phys. 69,pp.1216-1223,1991
    19. K. L. Johnson. Contact mechanics. Cambridge university press, 1987.
    20. 魏伯任,”奈米壓痕實驗應用於塊材、覆膜材料機械性質以及硬脆材料黏彈性質量測—理論分析與實驗印證”,國立成功大學機械工程研究所博士論文,2005
    21. I. N. Sneddon "The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile." International Journal of Engineering Science 3.1 (1965): 47-57.
    22. R. B. King,"Elastic analysis of some punch problems for a layered medium."International Journal of Solids and Structures 23.12 (1987): 1657-1664.
    23. http://www.leeds.ac.uk/particletechnology/nano.htm ,Ghadiri Research Group, University of Leeds
    24. http://www.engineering.unl.edu/research/bm3/Nanoindenter.shtml#details, University of Nebraska-Lincoln
    25. J. R. Tuck. "Indentation hardness evaluation of cathodic arc deposited thin hard coatings." Surface and Coatings Technology 139.1 (2001): 63-74.
    26. http://www.ptc-heater.com.tw/home.htm ,金龍俊科技股份有限公司
    27. Tc handbook, TEMPSENS INSTRUMENT
    28. 李泱儒 ,“多層薄膜熱擴散分析研究”,國立成功大學機械工程研究所碩士論文,2012.
    29. Y. Zoo, D. Adams, J. W. Mayer, T. L. Alford. Investigation of coefficient of thermal expansion of silver thin film on different substrates using X-ray diffraction.Thin solid films, 513(1), 170-174.
    30. W. L. Fang, and C. Y. Lo. "On the thermal expansion coefficients of thin films." Sensors and Actuators A: Physical 84.3 (2000): 310-314.
    31. 謝振剛,”氧化鋅鋁透明導電膜光、電特性之研究”,國立中央大學光電科學研究所碩士論文,2005
    32. T. Ashida, A. Miyamura , N. Oka, Y. Sato, T. Yagi, N. Taketoshi, Y. Shigesato. Thermal transport properties of polycrystalline tin-doped indium oxide films. Journal of Applied Physics, 105(7), 073709-073709.
    33. I. Hatta, Y. Sasuga, R. Kato, A. Maesono. Thermal diffusivity measurement of thin films by means of an ac calorimetric method. Review of Scientific Instruments, 56(8), 1643-1647.

    無法下載圖示 校內:2023-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE