| 研究生: |
王奕迪 Wang, Yi-Ti |
|---|---|
| 論文名稱: |
薄膜熱膨脹與熱擴散係數量測分析研究 Measurement and Analysis of Thermal expansion Coefficient and Thermal Diffusivity of Thin Film Specimens |
| 指導教授: |
林仁輝
Lin, Jen-Fin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | 薄膜 、熱膨脹係數 、熱擴散係數 |
| 外文關鍵詞: | thin film, thermal diffusivity, coefficient of thermal expansion |
| 相關次數: | 點閱:109 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文針對微奈米尺度的薄膜熱膨脹及熱擴散係數進行量測與分析研究。對於薄膜熱膨脹係數量測方法,在以往的研究中往往都對材料有許多的限制,如結晶性、導電性等,而沒有一個簡易且通用的量測方法。本研究以表面粗度儀量測試片在不同溫度下的表面形貌,利用試片在不同溫度下,表面形貌的曲率半徑變化,計算薄膜的熱膨脹係數。此方法是利用材料受溫熱膨脹的特性,薄膜與基板熱膨脹係數不同而導致結構彎曲而改變曲率半徑,此量測方法對於材料性質並無限制,是一種簡單快速的量測方法。
薄膜熱擴散係數係以溫度振盪法結合變頻率方式進行量測,以薄膜兩不同界面溫度變化的相位差推導出熱擴散係數。實驗上以致冷片(Peltier)為熱源結合方波電路產生溫度振盪,以熱電偶量測薄膜不同界面的溫度變化,並將熱電偶的量測訊號以鎖相放大器(Lock-in Amplifier)進行分析,得到薄膜不同界面間溫度變化的相位差。實驗上的誤差如熱飄移(Thermal drift),可以鎖相放大器抓取特定頻率的訊號克服;因熱電偶接觸狀況不同造成的誤差,透過變頻率實驗方法,在資料處理上,以線性回歸方法找出頻率-相位差的關係,即可找出熱電偶接觸狀況對實驗所造成的影響。透過以上的實驗及分析方法即可求出薄膜的熱擴散係數。
This research focuses on the thermal expansion coefficient and thermal diffusivity of thin film specimens. In the past studies, without a simple and versatile method of measurement, the methods of measuring the thermal expansion coefficient are many restrictions on the material often, such as crystallinity and electric conductivity. In the present study, the thermal expansion coefficient can be estimated by measuring the change of the radius of curvature of the thin film specimens surface morphology under difference temperature. With taking advantage of the material properties, the difference of the thermal expansion coefficients between thin film structure and the substrate will cause the whole structure bending and changing the radius of curvature. The method is not restricted to material, is a simple and fast method of measurement.
To measure the thermal diffusivity, the heat conduction solution in the multi-layered specimens is developed to be one-dimensional and varying with the amplitude and frequency of the oscillating temperature imposed. The phase lag of temperature due to the difference layers of the thin film can be expressed as a function of film thickness, oscillating temperature frequency, and thermal diffusivity. Experimentally, with a varying frequency of the oscillating temperature imposed by the peltier beneath the specimen’s substrate, the thermocouples are placed to have their tip in contact with the top surfaces of two adjacent layers individually in order to measure temperature signal of these two surfaces. Then the measured signals are analyzed by Lock-in amplifier to obtain the temperature phase lag. This phase lag value is then substituted into the previously developed phase lag expression to determine the thermal diffusivity of the thin film specimen.
1. Timoshenko, S. "Analysis of bi-metal thermostats." J. Opt. Soc. Am 11.3 (1925): 233-255.
2. M. Miyagi and N. Funakoshi, “ Internal stress and thermal expansion
coefficient of Gda-Si films”, Jpn. J. Appl. Phys., 20, pp. 289-290, 1981.
3. 田春林 ,“光學薄膜應力與熱膨脹係數量測之研究”,國立中央大學光電科學研究所博士論文,2000.
4. Y. Kuru, M. Wohlschlögel, U. Welzel, E. J and Mittemeijer , “Coefficients of Thermal Expansion of Thin Metal Films Investigated by Non-ambient X-ray Diffraction Stress Analysis”, Surface and Coatings Technology, Vol.202, No.11,pp.2306-2309, 2008.
5. S. H. Lee, and D. Kwon. "The analysis of thermal stress effect on electromigration failure time in Al alloy thin-film interconnects." Thin Solid Films 341.1 (1999): 136-139.
6. H. V. Tiwary, and G. D. Sao. "An electrical method for the measurement of thermal expansion of thin films." Journal of Physics E: Scientific Instruments 14.12 (1981): 1378.
7. J. M. Gere and B. J. Goodno “Mechanics of Materials”,Cengage Learning,7th edition,2009
8. W. L. Fang, H. C. Tsai, and C. Y. Lo. "Determining thermal expansion coefficients of thin films using micromachined cantilevers." Sensors and Actuators A: Physical 77.1 (1999): 21-27.
9. D. G. Cahill "Heat transport in dielectric thin films and at solid-solid interfaces."Microscale Thermophysical Engineering 1.2 (1997): 85-109.
10. D. G. Cahill,” HEAT TRANSPORT IN DIELECTRIC THIN FILMS AND AT SOLID-SOLID INTERFACES”, Microscale Thermophysical. Eng., pp.85-109, 1997
11. E. Jansen and E. Obermeier,” Thermal conductivity measurements on thin films based on micromechanical devices”, J. Micromech. Microeng., 6,pp. 118–121,1996
12. O. W. Keading, H. Shurk, and K. E. Goodson, Thermal Conduction in Me tallized Silicon-Dioxide Laye rs on Silicon, Appl. Phys. Lett., 65, pp. 1629-1631, 1994
13. Y. C. Tai, C. H. Mastrangelo, and R. S. Muller. "Thermal conductivity of heavily doped low‐pressure chemical vapor deposited polycrystalline silicon films." Journal of Applied Physics 63.5 (1988): 1442-1447.
14. D. G. Cahill,” Thermal conductivity measurement from 30 to 750 K: the 3ω method”, J. Appl. Phys., Vol.91, pp.802-808,1989
15. S. M. Lee, and D. G. Cahill. "Heat transport in thin dielectric films." Journal of Applied Physics 81.6 (1997): 2590-2595. 3
16. A. J. Ångstrom, Ann. Phys. , vol. 114, pp. 513, 1861
17. T. Yagi, K. Tamano, and Y. Sato,” Analysis on thermal properties of tin doped indium oxide films by picosecond thermoreflectance measurement”, J. Vac. Sci. Technol.A,23(4), 2005
18. A. Salazar, A. Stinchez-Lavega, and J. Ferntndez,”Thermal diffusivity measurements in solids by the ‘‘mirage’’,technique: Experimental results”, J. Appl. Phys. 69,pp.1216-1223,1991
19. K. L. Johnson. Contact mechanics. Cambridge university press, 1987.
20. 魏伯任,”奈米壓痕實驗應用於塊材、覆膜材料機械性質以及硬脆材料黏彈性質量測—理論分析與實驗印證”,國立成功大學機械工程研究所博士論文,2005
21. I. N. Sneddon "The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile." International Journal of Engineering Science 3.1 (1965): 47-57.
22. R. B. King,"Elastic analysis of some punch problems for a layered medium."International Journal of Solids and Structures 23.12 (1987): 1657-1664.
23. http://www.leeds.ac.uk/particletechnology/nano.htm ,Ghadiri Research Group, University of Leeds
24. http://www.engineering.unl.edu/research/bm3/Nanoindenter.shtml#details, University of Nebraska-Lincoln
25. J. R. Tuck. "Indentation hardness evaluation of cathodic arc deposited thin hard coatings." Surface and Coatings Technology 139.1 (2001): 63-74.
26. http://www.ptc-heater.com.tw/home.htm ,金龍俊科技股份有限公司
27. Tc handbook, TEMPSENS INSTRUMENT
28. 李泱儒 ,“多層薄膜熱擴散分析研究”,國立成功大學機械工程研究所碩士論文,2012.
29. Y. Zoo, D. Adams, J. W. Mayer, T. L. Alford. Investigation of coefficient of thermal expansion of silver thin film on different substrates using X-ray diffraction.Thin solid films, 513(1), 170-174.
30. W. L. Fang, and C. Y. Lo. "On the thermal expansion coefficients of thin films." Sensors and Actuators A: Physical 84.3 (2000): 310-314.
31. 謝振剛,”氧化鋅鋁透明導電膜光、電特性之研究”,國立中央大學光電科學研究所碩士論文,2005
32. T. Ashida, A. Miyamura , N. Oka, Y. Sato, T. Yagi, N. Taketoshi, Y. Shigesato. Thermal transport properties of polycrystalline tin-doped indium oxide films. Journal of Applied Physics, 105(7), 073709-073709.
33. I. Hatta, Y. Sasuga, R. Kato, A. Maesono. Thermal diffusivity measurement of thin films by means of an ac calorimetric method. Review of Scientific Instruments, 56(8), 1643-1647.
校內:2023-01-01公開