| 研究生: |
王薏雯 Wang, Yi-wen |
|---|---|
| 論文名稱: |
整合福衛二號高時間解析度和高空間解析度衛星影像與田間光譜資料監測水稻生長和預測產量 Integrating FORMOSAT-2 High-Temporal And High-Spatial Imagery With Field Data To Monitor Growth And Estimate Yield Of Rice Crop |
| 指導教授: |
劉正千
Liu, Cheng-chien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 生長參數 、葉面積指數 、遙測 、產量預測 、水稻 、光譜參數 |
| 外文關鍵詞: | Growth parameter, Rice, Leaf area index, Spectral parameter, Yield prediction, Remote sensing |
| 相關次數: | 點閱:109 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我國航遙測技術推動始於農林業調查,歷經幾十年來的發展已漸成熟,每年的稻作栽培面積調查與稻米產量預測乃是國內遙測技術最重要的應用項目之一。自1980年開始前臺灣省政府糧食局即利用航攝影像進行臺灣全區之稻作面積調查,因為當時衛星影像取得不易且資源衛星影像解析度較低,航攝影像相對較為簡捷便利。時至今日,固然航攝影像的應用仍有低時間解析度、高花費及資料處理時間冗長等缺點,國內農業資源調查與監測仍以航攝影像為主,惟近幾年來利用不同類型衛星影像來替代航攝影像的努力仍方興未艾,然多侷限於稻米產量預測。福爾摩沙二號衛星(簡稱福衛二號)係我國完全自主控制之資源與科學用途衛星,由於福衛二號與其他資源衛星相比較之最大優勢在於色彩真實、高空間與高時間解析度、每日再現性等,正好解決目前遙測科技應用於農業遭逢的難題,亦能夠提高農作物生長估測及產量預測的準度與精度。本篇論文研究採用福衛二號之可見光和近紅外光光譜資料,配合田間取樣調查及近地面量測植被高解析反射光譜,發展一套模組(algorithm)來監測水稻植株之生長並預估收穫時之產量表現。田間試驗係在臺中縣霧峰鄉農委會農業試驗所農場進行,於2006年一期稻作(3-6月)及二期稻作(8-11月)以輻射分光光譜儀(spectroradiometer, model GER-2600, Geophysical & Environmental Research Corp., NY, USA)量測近地面之水稻植被高解析反射光譜(350-2400 nm),並每隔2-3週取樣調查葉面積指數(leaf area index, LAI)與生育進展,再於收穫時割取小區產量。在福衛二號資料方面,總計選用了36張經過錯位修正、輻射校正之衛星影像,這些衛星影像擷取之植被光譜資訊適時反映了水稻植被顏色及形態上的變化,並由此計算出標準差植被指數(或稱正規化植生指數; normalized difference vegetation index, NDVI)。依據由近地面量測之植被高解析反射光譜計算之NDVInear ground與實測LAImeasured建立的指數函數關係,可將不同生長時期計算之福衛二號NDVIFORMOSAT-2數值估算相對應LAIFORMOSAT-2數值。再藉由最佳時期累加之實測LAImeasured與實測產量之迴歸方程式,進而推估由福衛二號影像資料預測之水稻產量。研究結果顯示,由福衛二號之衛星影像所構建遙測-水稻產量模組具有監測水稻生長與預測產量之應用潛力,對於霧峰地區2006年一期稻作和二期稻作獲得合理產量預估。本文研究構建之遙測-水稻產量模組經納入多年期多地點資料以增進對環境變異的適用性,同時改進必要修正與校正程序後,預料將能提升對水稻生長監測與產量預測的準確度,並進一步發展為大區域之遙測應用。
Estimating the annual yield of rice is one of the most important applications of remote sensing in Taiwan. In the mid 1980s’, at least half of the gross domestic product contributed by agriculture in Taiwan came from rice. The demand of an efficient approach to investigate and estimate crops yield in a large scale, particularly for rice crop, initiates the development of remote sensing techniques afterwards. Nowadays, taking the aerial photos of rice paddy over the island of Taiwan has become a regular task operated once or twice per year. The application of these aerial photos in estimating crop yield is limited by their low temporal resolution, expensive cost and time-consuming data processing. Attempts have therefore been made to use various satellite images to replace the aerial photos in the recent years, with the sacrifice of spatial resolution, yet the same limitations still impede the application of remote sensing in yield estimation. The successful operation of FORMOSAT-2 satellite proved the concept that the temporal resolution of a remote sensing system can be much improved by deploying a high spatial resolution sensor in a daily revisit orbit. Therefore, the aforementioned limitations of remote sensing in estimating crop yield can be completely removed by employing the FORMOSAT-2 high-temporal and high-spatial imagery. This research follows the approach proposed by Chen and Yang (2005) to integrate the FORMOSAT-2 observations with a comprehensive dataset collected in the field, with the intention to monitor growth and estimate yield of rice crop. The field experiments were conducted at Taiwan Agricultural Research Institute Experimental Farm at Wufeng in the first and the second cropping seasons of 2006. The leaf area index (LAI), developmental stage, yield at harvest and the near ground canopy hyperspectral reflectance (R) were collected at the intervals of two to three weeks for rice plants (Oryza sativa L. cv. TNG 67) grown under eight planting densities. A total of thirty-six multispectral images of the study area taken by FORMOSAT-2 during the growing periods were processed by band-to-band coregistration, spectral preserved pan-sharpening, automatic orthorectification, multitemporal imagery matching and radiometric normalization. These FORMOSAT-2 images provided us the information of NDVI, and hence the LAI of rice paddy at different stages of growth. Finally, the yields of both crops were estimated by accumulating FORMOSAT-2-derived LAI and compared to the actual amounts of yields at harvest. Results demonstrated the potential of FORMOSAT-2 high-temporal and high-spatial images in monitoring rice growth and estimating crop yield.
Ahern, F. J., et al., Use of clear lakes as standard reflectors for atmospheric measurements, International Symposium on Remote Sensing of Environment, 11 th, Ann Arbor, Mich, Proceedings, 1, 731-755, 1977
Anderson, J. E., et al., Remote Sensing and Precision Agriculture: Ready for Harvest or Still Maturing?, photogrammetric Engineering and Remote Sensing, 65(10), 1999
Aparicio, N., et al., Relationship between Growth Traits and Spectral Vegetation Indices in Durum Wheat, Crop Science, 42(5), 1547-1555, 2002
Baez-Gonzalez, A. D., et al., Using Satellite and Field Data with Crop Growth Modeling to Monitor and Estimate Corn Yield in Mexico, Crop Science, 42(6), 1943-1949, 2002
Baret, F., et al., Crop biomass evaluation using radiometric measurements, Photogrammetria, 43(5), 241-256, 1989
Bauman, B. A. M., Radiometric measurements and crop yield forecasting some observations over Millet and Sorghum experimental plots in Mali, in International Journal of Remote Sensing, edited, pp. 1539-1552. 1992
Ben-Dor, E., et al., Comparison of 3 calibration techniques for utilisation of GER 63-channel aircraft scanner data of Makhtesh-Ramon, Negev, Israel, Photogrammetric Engineering and Remote Sensing, 60, 1339-1354, 1994
Ben-Dor, E., and N. Levin, Determination of surface reflectance from raw hyperspectral data without simultaneous ground data measurements: a case study of the GER 63-channel sensor data acquired over Naan, Israel, International Journal of Remote Sensing, 21(10), 2053-2074, 2000
Berk, A., et al., Modtran: A Moderate Resolution Model for LOWTRAN 7, Air Force Geophysics Laboratory, Air Force Systems Command, US Air Force. 1987
Biatwright, G. O., and V. S. Whitehead, Early Warning and Crop Condition Assessment Research, Geoscience and Remote Sensing, IEEE Transactions on, GE-24(1), 54-64, 1986
Canty, M. J., et al., Automatic radiometric normalization of multitemporal satellite imagery, Remote Sensing of Environment, 91, 441-451, 2004
Chavez, P. S., An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data, Remote Sensing of Environment, 24(3), 459-479, 1988
Chavez, P. S., Radiometric calibration of Landsat thematic mapper mutlispectral images, Photogrammetric Engineering and Remote Sensing, 55, 1285-1294, 1989
Chavez, P. S., Image-based atmospheric corrections: Revisited and improved, Photogrammetric engineering and remote sensing, 62(9), 1025-1036, 1996
Chen, J. M., and J. Cihlar, Retrieving leaf area index of boreal conifer forests using Landsat TM images, Remote Sensing of Environment, 55(2), 153-162, 1996
Chen, R. K., and C. M. Yang, Determining the Optimal Timing for Using LAI and NDVI to Predict Rice Yield, Photogrammetry and Remote Sensing, 10(3), 239-254, 2005
Cidad, V. G., et al., Use of very high resolution satellite images for precision farming: recommendations on nitrogen fertilization, paper presented at Remote Sensing for Agriculture, Ecosystems, and Hydrology II, SPIE, Barcelona, Spain.(2001)
Coppin, P. R., and M. E. Bauer, Processing of multitemporal Landsat TM imagery to optimize extraction of forest cover change features, Geoscience and Remote Sensing, IEEE Transactions on, 32(4), 918-927, 1994
Counce, P. A., et al., Rice yield and plant yield variability rsponses to equidistant spacing, Crop science, 29(1), 175-179, 1989
Counce, P. A., and B. R. Wells, Rice plant population density effect on early-season nitrogen requirement, J. Prod. Agric, 3(3), 390-393, 1990
Du, Y., et al., Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection, Remote Sensing of Environment, 82, 123-134, 2002
Evans, L. T., and S. K. De Datta, The relations between irradiance and grain yield of irrigated rice in the tropics, as influenced by cultivar, nitrogen fertilizer application and month of planting, Field Crops Research, Amsterdam, 2, 1-17, 1979
Feng, Z., et al., Using time series of SPOT VGT NDVI for crop yield forecasting.(2003)
Ferrier, G., Evaluation of apparent surface reflectance estimation methodologies, International journal of remote sensing(Print), 16(12), 2291-2297, 1995
Ferrier, G., and G. Wadge, The application of imaging spectrometry data to mapping alteration zones associated with gold mineralization in southern Spain, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 33, 308A-308A, 1996
Francescangeli, N., et al., Effects of plant density in broccoli on yield and radiation use efficiency, Scientia Horticulturae, 110(2), 135-143, 2006
Freemantle, J. R., et al., Calibration of Imaging Spectrometer Data to Reflectance Using Pseudo-Invariant Features, Proceedings of the 15th Canadian symposium on remote sensing, Toronto, Canada, 452–455, 1992
Gilabert, M. A., et al., Analyses of spectral-biophysical relationships for a corn canopy, Remote Sensing of Environment, 55(1), 11-20, 1996
Goward, S. N., and K. F. Huemmrich, Vegetation canopy PAR absorptance and the normalized difference vegetation index: An assessment using the SAIL model, Remote Sensing of Environment, 39(2), 119-140, 1992
Gupta, R. K., et al., The relationship of hyper-spectral vegetation indices with leaf area index (LAI) over the growth cycle of wheat and chickpea at 3 nm spectral resolution, Advances in Space Research, 38(10), 2212-2217, 2006
Houng, K. H., Efficiency of nitrogen fertilization on the yield of the first and second rice crops, In:Proceedings of the Symposium on the Causes of Low Yield of the Second Crop Rice in Taiwan and the Measures for Improvement, 133-140, 1979
Huang, H. F., et al., Using NOAA AVHRR and Landsat TM to estimate rice area year-by-year, International Journal of Remote Sensing, 19, 521-525, 1998
Huete, A. R., et al., Spectral response of a plant canopy with different soil backgrounds, Remote Sensing of Environment, 17(1), 37-53, 1985
Huete, A. R., A soil-adjusted vegetation index(SAVI), Remote Sensing of Environment, 25, 295-309, 1988
Justice, C. O., et al., Analysis of the phenology of global vegetation using meteorological satellite data, International Journal of Remote Sensing, 6(8), 1271-1318, 1985
Justice, C. O., et al., The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research, Geoscience and Remote Sensing, IEEE Transactions on, 36(4), 1228-1249, 1998
Kastens, J. H., et al., Image masking for crop yield forecasting using AVHRR NDVI time series imagery, Remote Sensing of Environment, 99(3), 341-356, 2005
Kaufman, Y. J., and D. Tanre, Atmospherically resistant vegetation index (ARVI) for EOS-MODIS, Geoscience and Remote Sensing, IEEE Transactions on, 30(2), 261-270, 1992
Kaufman, Y. J., et al., The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol, Geoscience and Remote Sensing, IEEE Transactions on, 35(5), 1286-1298, 1997
Kigalu, J. M., Effects of planting density on the productivity and water use of tea (Camellia sinensis L.) clones: I. Measurement of water use in young tea using sap flow meters with a stem heat balance method, Agricultural Water Management, 90(3), 224-232, 2007
Kneizys, F. X., et al., User guide to LOWTRAN 7, Hanscom AFB, Massachusetts, 146, 1989
Knipling, E. B., Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation, Remote Sensing of Environment, 1(3), 155-159, 1970
Kogan, F., et al., Modelling corn production inChina using AVHRR-based vegetation health Indices, International Journal of Remote Sensing, 26(11), 2325-2336, 2005
Kruse, F. A., Use of Airborne Imaging Spectrometer data to map minerals associated with hydrothermally altered rocks in the northern Grapevine Mountains, Nevada and California,, Remote Sensing of Environment, 24(1), 31-51, 1988
Lasaponara, R., On the use of principal component analysis (PCA) for evaluating interannual vegetation anomalies from SPOT/VEGETATION NDVI temporal series, Ecological Modelling, 194(4), 429-434, 2006
Liang, S., et al., An operational atmospheric correction algorithm for Landsat Thematic Mapper imagery over the land, Journal of Geophysical Research, 102(D14), 17173-17186, 1997
Liu, C. C., Processing of FORMOSAT-2 Daily Revisit Imagery for Site Surveillance, Geoscience and Remote Sensing, IEEE Transactions on, 44(11), 3206-3214, 2006
Liu, C. C., et al., Image processing of FORMOSAT-2 data for monitoring the South Asia tsunami, International Journal of Remote Sensing, 28(13-14), 3093-3111, 2007
Liu, C. H., A Simple Atmospheric Correction Model for ROCSAT-2 RSI Data, Terrestrial, Atmospheric and Oceanic Sciences, 14(4), 505-514, 2003
Liu, H. Q., and A. Huete, A feedback based modification of the NDVI to minimize canopy background and atmospheric noise, Geoscience and Remote Sensing, IEEE Transactions on, 33(2), 457-465, 1995
Ma, B. L., et al., Early Prediction of Soybean Yield from Canopy Reflectance Measurements, Agron J, 93(6), 1227-1234, 2001
Macdonald, R. B., A summary of the history of the development of automated remote sensing for agricultural applications International Geoscience and Remote Sensing Symposium (IGARSS '83), San Francisco, CA; United States, 1983
Moran, M. S., et al., Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output, Remote Sensing of Environment, 41(2), 169-184, 1992
Moulin, S., et al., Global-Scale Assessment of Vegetation Phenology Using NOAA/AVHRR Satellite Measurements, Journal of Climate, 10(6), 1154-1170, 1997
Nemani, R., et al., Forest ecosystem process at the watershed scale: sensitivity to remotely-sensed leaf area index estimates, International Journal of Remote Sensing, 14(13), 2519-2534, 1993
P.J. Pinter, J., et al., Remote Sensing for Crop Management, Photogrammetric Engineering and Remote Sensing, 69(6), 647-664, 2003
Price, J. C., Estimating vegetation amount from visible and near infrared reflectances, Remote Sensing of Environment, 41(1), 29-34, 1992
Price, J. C., and W. C. Bausch, Leaf Area Index Estimation From Visible and Near-Infrared Reflectance Data, Remote Sensing of Environment, 52, 55-65, 1995
Rasmussen, M. S., Operational yield forecast using AVHRR NDVI data: reduction of environmental and inter-annual variability, International Journal of Remote Sensing, 18(5), 1059-1077, 1997
Rouse, J. W., et al., Monitoring the Vernal Advancement and Retrogradation (greenwave Effect) of Natural Vegetation, Texas A & M University, Remote Sensing Center. 1974
Schroeder, T. A., et al., Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon, Remote Sensing of Environment, 103(1), 16-26, 2006
Seiter, S., et al., Forage Soybean Yield and Quality Responses to Plant Density and Row Distance, Agron J, 96(4), 966-970, 2004
Sellers, P. J., Canopy reflectance, photosynthesis and transpiration, International Journal of Remote Sensing, 6(8), 1335-1372, 1985
Shieh, Y.-J., Growth and community photosynthesis of rice plants in the first and second crop seasons, In:Proceedings of the Symposium on the Causes of Low Yield of the Second Crop Rice in Taiwan and the Measures for Improvement, 91-100, 1978
Smith, G. M., and E. J. Milton, The use of the empirical line method to calibrate remotely sensed data to reflectance, International Journal of Remote Sensing, 20, 2653-2662, 1999
Song, C., et al., Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects?, Remote Sensing of Environment, 75(2), 230-244, 2001
Song, C., and C. E. Woodcock, Monitoring forest succession with multitemporal Landsat images: factors of uncertainty, Geoscience and Remote Sensing, IEEE Transactions on, 41(11), 2557-2567, 2003
Spanner, M. A., et al., The seasonality of AVHRR data of temperate coniferous forests: Relationship with leaf area index, Remote Sensing of Environment, 33(2), 97-112, 1990
Su, M. R., and C. M. Yang, Estimation of rice growth from reflectance spectra of vegetative cover, J. Photogram. Remote Sens, 4(4), 13-23, 1999
Teillet, P. M., and G. Fedosejevs, On the dark target approach to atmospheric correction of remotely sensed data, Canadian Journal of Remote Sensing, 21(4), 374-387, 1995
Tucker, C. J., Red and photographic infrared linear combinations for monitoring vegetation, Remote Sensing of Environment(8), 127-150, 1979
Tucker, C. J., et al., Satellite remote sensing of total herbaceous biomass production in the senegalese sahel: 1980-1984, Remote Sensing of Environment, 17(3), 233-249, 1985
Vermote, E. F., et al., Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview, Geoscience and Remote Sensing, IEEE Transactions on, 35(3), 675-686, 1997
Wiegand, C. L., et al., Vegetation indices in crop assessments, Remote Sensing of Environment, 35(2-3), 105-119, 1991
Wiegand, C. L., et al., Multisite analyses of spectral-biophysical data for wheat, Remote Sensing of Environment, 42(1), 1-21, 1992
Yang, C., et al., Comparison of QuickBird Satellite Imagery and Airborne Imagery for Mapping Grain Sorghum Yield Patterns, Precision Agriculture, 7(1), 33-44, 2006
Yang, C. M., and M. R. Su, Analysis of reflectance spectrum of rice canopy, Chin.J.Agrometeorol(4), 87-95, 1997
Yang, C. M., 以遙測技術探討環境對水稻生產之影響, 161-180, 1999
Yang, C. M., and R. K. Chen, Modeling Rice Growth with Hyperspectral Reflectance Data, Crop Sci, 44(4), 1283-1290, 2004
Yang, C. M., and R. K. Chen, Potential for Using FORMOSAT-II Data Simulated by Hyperspectral Reflectance to Estimate Growth and Predict Yield of Rice, Taiwan Agriculture Research, 54(1), 54-69, 2005
Yang, C. M., and R. K. Chen, Differences in Growth Estimation and Yield Prediction of Rice Crop Using Satellites Data Simulated from Near Ground Hyperspectral Reflectance, Photogrammetry and Remote Sensing, 12(1), 93-105, 2007
Zarco-Tejada, P. J., et al., Temporal and Spatial Relationships between Within-Field Yield Variability in Cotton and High-Spatial Hyperspectral Remote Sensing Imagery, Agron J, 97(3), 641-653, 2005
Zeng, L., and M. C. Shannon, Effects of Salinity on Grain Yield and Yield Components of Rice at Different Seeding Densities, Agronomy Journal, 92(3), 418-423, 2000
王成璦, et al., 栽培密度對水稻產量及品質的影響, 瀋陽農業大學學報, 35(4), 318-322, 2004
申雍, et al., 應用遙測技術推估水稻產量之初探, 農業試驗所特刊-應用於水稻精準農業體系之知識與技術, 101, 39-50, 2002
吳啟南, et al., 衛星及地面遙測資料應用於水稻生長及產量監測初步研究, 農業試驗所特刊-應用於水稻精準農業體系之知識與技術, 101, 19-38, 2002
張維恕, 應用衛星遙測影像進行大肚台地紅土範圍界定與中央山脈裸岩區之岩性分析 國立成功大學碩士論文 2006
章國威, et al., 應用抽穗期多光譜航照影像預估水稻產量之研究, Photogrammetry and Remote Sensing, 11(1), 27-38, 2006
楊純明, and 林俊義, 水稻精準農業(耕)體系之研究, 129 pp., 行政院農業委員會農業試驗所,臺中縣. 2002
劉振榮, et al., 應用機載多光譜遙測資料預估水稻產量之研究, Photogrammetry and Remote Sensing, 8(4), 71-82, 2004
劉廣員, and 邱金桓, 衛星對地遙感應用中的鄰近效應研究, Chinese Journal of Atmospheric Sciences, 28(002), 311-319, 2004