簡易檢索 / 詳目顯示

研究生: 王薏雯
Wang, Yi-wen
論文名稱: 整合福衛二號高時間解析度和高空間解析度衛星影像與田間光譜資料監測水稻生長和預測產量
Integrating FORMOSAT-2 High-Temporal And High-Spatial Imagery With Field Data To Monitor Growth And Estimate Yield Of Rice Crop
指導教授: 劉正千
Liu, Cheng-chien
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 147
中文關鍵詞: 生長參數葉面積指數遙測產量預測水稻光譜參數
外文關鍵詞: Growth parameter, Rice, Leaf area index, Spectral parameter, Yield prediction, Remote sensing
相關次數: 點閱:109下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我國航遙測技術推動始於農林業調查,歷經幾十年來的發展已漸成熟,每年的稻作栽培面積調查與稻米產量預測乃是國內遙測技術最重要的應用項目之一。自1980年開始前臺灣省政府糧食局即利用航攝影像進行臺灣全區之稻作面積調查,因為當時衛星影像取得不易且資源衛星影像解析度較低,航攝影像相對較為簡捷便利。時至今日,固然航攝影像的應用仍有低時間解析度、高花費及資料處理時間冗長等缺點,國內農業資源調查與監測仍以航攝影像為主,惟近幾年來利用不同類型衛星影像來替代航攝影像的努力仍方興未艾,然多侷限於稻米產量預測。福爾摩沙二號衛星(簡稱福衛二號)係我國完全自主控制之資源與科學用途衛星,由於福衛二號與其他資源衛星相比較之最大優勢在於色彩真實、高空間與高時間解析度、每日再現性等,正好解決目前遙測科技應用於農業遭逢的難題,亦能夠提高農作物生長估測及產量預測的準度與精度。本篇論文研究採用福衛二號之可見光和近紅外光光譜資料,配合田間取樣調查及近地面量測植被高解析反射光譜,發展一套模組(algorithm)來監測水稻植株之生長並預估收穫時之產量表現。田間試驗係在臺中縣霧峰鄉農委會農業試驗所農場進行,於2006年一期稻作(3-6月)及二期稻作(8-11月)以輻射分光光譜儀(spectroradiometer, model GER-2600, Geophysical & Environmental Research Corp., NY, USA)量測近地面之水稻植被高解析反射光譜(350-2400 nm),並每隔2-3週取樣調查葉面積指數(leaf area index, LAI)與生育進展,再於收穫時割取小區產量。在福衛二號資料方面,總計選用了36張經過錯位修正、輻射校正之衛星影像,這些衛星影像擷取之植被光譜資訊適時反映了水稻植被顏色及形態上的變化,並由此計算出標準差植被指數(或稱正規化植生指數; normalized difference vegetation index, NDVI)。依據由近地面量測之植被高解析反射光譜計算之NDVInear ground與實測LAImeasured建立的指數函數關係,可將不同生長時期計算之福衛二號NDVIFORMOSAT-2數值估算相對應LAIFORMOSAT-2數值。再藉由最佳時期累加之實測LAImeasured與實測產量之迴歸方程式,進而推估由福衛二號影像資料預測之水稻產量。研究結果顯示,由福衛二號之衛星影像所構建遙測-水稻產量模組具有監測水稻生長與預測產量之應用潛力,對於霧峰地區2006年一期稻作和二期稻作獲得合理產量預估。本文研究構建之遙測-水稻產量模組經納入多年期多地點資料以增進對環境變異的適用性,同時改進必要修正與校正程序後,預料將能提升對水稻生長監測與產量預測的準確度,並進一步發展為大區域之遙測應用。

    Estimating the annual yield of rice is one of the most important applications of remote sensing in Taiwan. In the mid 1980s’, at least half of the gross domestic product contributed by agriculture in Taiwan came from rice. The demand of an efficient approach to investigate and estimate crops yield in a large scale, particularly for rice crop, initiates the development of remote sensing techniques afterwards. Nowadays, taking the aerial photos of rice paddy over the island of Taiwan has become a regular task operated once or twice per year. The application of these aerial photos in estimating crop yield is limited by their low temporal resolution, expensive cost and time-consuming data processing. Attempts have therefore been made to use various satellite images to replace the aerial photos in the recent years, with the sacrifice of spatial resolution, yet the same limitations still impede the application of remote sensing in yield estimation. The successful operation of FORMOSAT-2 satellite proved the concept that the temporal resolution of a remote sensing system can be much improved by deploying a high spatial resolution sensor in a daily revisit orbit. Therefore, the aforementioned limitations of remote sensing in estimating crop yield can be completely removed by employing the FORMOSAT-2 high-temporal and high-spatial imagery. This research follows the approach proposed by Chen and Yang (2005) to integrate the FORMOSAT-2 observations with a comprehensive dataset collected in the field, with the intention to monitor growth and estimate yield of rice crop. The field experiments were conducted at Taiwan Agricultural Research Institute Experimental Farm at Wufeng in the first and the second cropping seasons of 2006. The leaf area index (LAI), developmental stage, yield at harvest and the near ground canopy hyperspectral reflectance (R) were collected at the intervals of two to three weeks for rice plants (Oryza sativa L. cv. TNG 67) grown under eight planting densities. A total of thirty-six multispectral images of the study area taken by FORMOSAT-2 during the growing periods were processed by band-to-band coregistration, spectral preserved pan-sharpening, automatic orthorectification, multitemporal imagery matching and radiometric normalization. These FORMOSAT-2 images provided us the information of NDVI, and hence the LAI of rice paddy at different stages of growth. Finally, the yields of both crops were estimated by accumulating FORMOSAT-2-derived LAI and compared to the actual amounts of yields at harvest. Results demonstrated the potential of FORMOSAT-2 high-temporal and high-spatial images in monitoring rice growth and estimating crop yield.

    摘要........................... i Abstract ....................... iii 誌謝............................. v 目錄............................ vi 圖目錄....................... ix 表目錄....................... xiv 第1 章 緒論.............. 1 1.1 研究動機................................................................................................................1 1.1.1 預測稻米產量重要性........................................................................... 1 1.1.2 傳統預測產量之限制........................................................................... 2 1.1.3 遙測技術............................................................................................... 2 1.1.4 小結....................................................................................................... 3 1.2 研究目的................................................................................................................4 1.3 論文架構................................................................................................................4 第2 章 文獻回顧.................................. 7 2.1 植(作)物光譜特徵相關理論.................................................................................7 2.1.1 光譜指數(或稱植被指數、植生指數) ................................................ 7 2.2 遙測在農業上之應用............................................................................................9 2.2.1 農業需求性..........................................................................................11 2.2.2 國外應用之實例................................................................................. 12 2.2.3 國內應用之實例................................................................................. 13 2.3 影像處理相關理論..............................................................................................15 2.3.1 小結..................................................................................................... 23 第3 章 研究策略............................. 25 3.1 研究步驟..............................................................................................................25 3.2 研究地區及材料..................................................................................................26 3.2.1 研究地區............................................................................................. 26 3.2.2 衛星資料............................................................................................. 32 3.2.3 地真資料............................................................................................. 38 3.2.4 野外光譜量測..................................................................................... 42 3.3 水稻生長估測模式之建立..................................................................................48 3.4 水稻產量預測之最佳時期..................................................................................51 第4 章 研究方法........................... 54 4.1 近地面高光譜數據分析......................................................................................54 4.1.1 轉換模擬福衛二號地面反射光譜之原理......................................... 55 4.1.2 計算地面反射光譜的NDVInear ground ................................................. 57 4.2 福衛二號影像自動處理系統與影像分析..........................................................61 4.2.1 錯位修正............................................................................................. 61 4.2.2 正射糾正............................................................................................. 62 4.2.3 多時期影像配準................................................................................. 63 4.2.4 大氣校正............................................................................................. 64 4.2.5 彩色融合............................................................................................. 74 4.2.6 福衛二號影像處理層級來源選定..................................................... 75 4.2.7 計算福衛二號影像NDVI 值............................................................. 78 4.3 福衛二號水稻預測產量之遙測模組..................................................................82 4.3.1 2006 年兩期作全生育期LAI 與DAT 之關係................................. 82 4.3.2 不同栽植密度與產量之關係............................................................. 88 4.3.3 最佳時期累積LAI 與產量之關係.................................................... 91 4.3.4 2006 年兩期稻作全生育期近地面NDVI 與DAT 之關係.............. 93 4.3.5 近地面量測NDVI 值與實測葉面積指數之關係建立..................... 99 4.3.6 2006 年兩期作全生育期NDVIFORMOSAT-2 與DAT 之關係............ 101 第5 章 研究結果............................ 106 5.1 福衛二號影像大氣校正....................................................................................106 5.1.1 2006 年一期稻作與二期稻作影像大氣校正結果.......................... 106 5.1.2 討論................................................................................................... 109 5.2 福衛二號影像之水稻生長估測........................................................................118 5.3 利用福衛二號影像之水稻產量預測................................................................120 5.4 本章討論............................................................................................................125 第6 章 結論與建議.......................... 126 6.1 結論....................................................................................................................126 6.2 建議....................................................................................................................128 參考文獻..................... 129 附錄一 福衛二號衛星穿透率曲線圖轉換工作...... 136 附錄二 大氣校正測試方法....................... 140 附錄表一..................... 146

    Ahern, F. J., et al., Use of clear lakes as standard reflectors for atmospheric measurements, International Symposium on Remote Sensing of Environment, 11 th, Ann Arbor, Mich, Proceedings, 1, 731-755, 1977
    Anderson, J. E., et al., Remote Sensing and Precision Agriculture: Ready for Harvest or Still Maturing?, photogrammetric Engineering and Remote Sensing, 65(10), 1999
    Aparicio, N., et al., Relationship between Growth Traits and Spectral Vegetation Indices in Durum Wheat, Crop Science, 42(5), 1547-1555, 2002
    Baez-Gonzalez, A. D., et al., Using Satellite and Field Data with Crop Growth Modeling to Monitor and Estimate Corn Yield in Mexico, Crop Science, 42(6), 1943-1949, 2002
    Baret, F., et al., Crop biomass evaluation using radiometric measurements, Photogrammetria, 43(5), 241-256, 1989
    Bauman, B. A. M., Radiometric measurements and crop yield forecasting some observations over Millet and Sorghum experimental plots in Mali, in International Journal of Remote Sensing, edited, pp. 1539-1552. 1992
    Ben-Dor, E., et al., Comparison of 3 calibration techniques for utilisation of GER 63-channel aircraft scanner data of Makhtesh-Ramon, Negev, Israel, Photogrammetric Engineering and Remote Sensing, 60, 1339-1354, 1994
    Ben-Dor, E., and N. Levin, Determination of surface reflectance from raw hyperspectral data without simultaneous ground data measurements: a case study of the GER 63-channel sensor data acquired over Naan, Israel, International Journal of Remote Sensing, 21(10), 2053-2074, 2000
    Berk, A., et al., Modtran: A Moderate Resolution Model for LOWTRAN 7, Air Force Geophysics Laboratory, Air Force Systems Command, US Air Force. 1987
    Biatwright, G. O., and V. S. Whitehead, Early Warning and Crop Condition Assessment Research, Geoscience and Remote Sensing, IEEE Transactions on, GE-24(1), 54-64, 1986
    Canty, M. J., et al., Automatic radiometric normalization of multitemporal satellite imagery, Remote Sensing of Environment, 91, 441-451, 2004
    Chavez, P. S., An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data, Remote Sensing of Environment, 24(3), 459-479, 1988
    Chavez, P. S., Radiometric calibration of Landsat thematic mapper mutlispectral images, Photogrammetric Engineering and Remote Sensing, 55, 1285-1294, 1989
    Chavez, P. S., Image-based atmospheric corrections: Revisited and improved, Photogrammetric engineering and remote sensing, 62(9), 1025-1036, 1996
    Chen, J. M., and J. Cihlar, Retrieving leaf area index of boreal conifer forests using Landsat TM images, Remote Sensing of Environment, 55(2), 153-162, 1996
    Chen, R. K., and C. M. Yang, Determining the Optimal Timing for Using LAI and NDVI to Predict Rice Yield, Photogrammetry and Remote Sensing, 10(3), 239-254, 2005
    Cidad, V. G., et al., Use of very high resolution satellite images for precision farming: recommendations on nitrogen fertilization, paper presented at Remote Sensing for Agriculture, Ecosystems, and Hydrology II, SPIE, Barcelona, Spain.(2001)
    Coppin, P. R., and M. E. Bauer, Processing of multitemporal Landsat TM imagery to optimize extraction of forest cover change features, Geoscience and Remote Sensing, IEEE Transactions on, 32(4), 918-927, 1994
    Counce, P. A., et al., Rice yield and plant yield variability rsponses to equidistant spacing, Crop science, 29(1), 175-179, 1989
    Counce, P. A., and B. R. Wells, Rice plant population density effect on early-season nitrogen requirement, J. Prod. Agric, 3(3), 390-393, 1990
    Du, Y., et al., Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection, Remote Sensing of Environment, 82, 123-134, 2002
    Evans, L. T., and S. K. De Datta, The relations between irradiance and grain yield of irrigated rice in the tropics, as influenced by cultivar, nitrogen fertilizer application and month of planting, Field Crops Research, Amsterdam, 2, 1-17, 1979
    Feng, Z., et al., Using time series of SPOT VGT NDVI for crop yield forecasting.(2003)
    Ferrier, G., Evaluation of apparent surface reflectance estimation methodologies, International journal of remote sensing(Print), 16(12), 2291-2297, 1995
    Ferrier, G., and G. Wadge, The application of imaging spectrometry data to mapping alteration zones associated with gold mineralization in southern Spain, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 33, 308A-308A, 1996
    Francescangeli, N., et al., Effects of plant density in broccoli on yield and radiation use efficiency, Scientia Horticulturae, 110(2), 135-143, 2006
    Freemantle, J. R., et al., Calibration of Imaging Spectrometer Data to Reflectance Using Pseudo-Invariant Features, Proceedings of the 15th Canadian symposium on remote sensing, Toronto, Canada, 452–455, 1992
    Gilabert, M. A., et al., Analyses of spectral-biophysical relationships for a corn canopy, Remote Sensing of Environment, 55(1), 11-20, 1996
    Goward, S. N., and K. F. Huemmrich, Vegetation canopy PAR absorptance and the normalized difference vegetation index: An assessment using the SAIL model, Remote Sensing of Environment, 39(2), 119-140, 1992
    Gupta, R. K., et al., The relationship of hyper-spectral vegetation indices with leaf area index (LAI) over the growth cycle of wheat and chickpea at 3 nm spectral resolution, Advances in Space Research, 38(10), 2212-2217, 2006
    Houng, K. H., Efficiency of nitrogen fertilization on the yield of the first and second rice crops, In:Proceedings of the Symposium on the Causes of Low Yield of the Second Crop Rice in Taiwan and the Measures for Improvement, 133-140, 1979
    Huang, H. F., et al., Using NOAA AVHRR and Landsat TM to estimate rice area year-by-year, International Journal of Remote Sensing, 19, 521-525, 1998
    Huete, A. R., et al., Spectral response of a plant canopy with different soil backgrounds, Remote Sensing of Environment, 17(1), 37-53, 1985
    Huete, A. R., A soil-adjusted vegetation index(SAVI), Remote Sensing of Environment, 25, 295-309, 1988
    Justice, C. O., et al., Analysis of the phenology of global vegetation using meteorological satellite data, International Journal of Remote Sensing, 6(8), 1271-1318, 1985
    Justice, C. O., et al., The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research, Geoscience and Remote Sensing, IEEE Transactions on, 36(4), 1228-1249, 1998
    Kastens, J. H., et al., Image masking for crop yield forecasting using AVHRR NDVI time series imagery, Remote Sensing of Environment, 99(3), 341-356, 2005
    Kaufman, Y. J., and D. Tanre, Atmospherically resistant vegetation index (ARVI) for EOS-MODIS, Geoscience and Remote Sensing, IEEE Transactions on, 30(2), 261-270, 1992
    Kaufman, Y. J., et al., The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol, Geoscience and Remote Sensing, IEEE Transactions on, 35(5), 1286-1298, 1997
    Kigalu, J. M., Effects of planting density on the productivity and water use of tea (Camellia sinensis L.) clones: I. Measurement of water use in young tea using sap flow meters with a stem heat balance method, Agricultural Water Management, 90(3), 224-232, 2007
    Kneizys, F. X., et al., User guide to LOWTRAN 7, Hanscom AFB, Massachusetts, 146, 1989
    Knipling, E. B., Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation, Remote Sensing of Environment, 1(3), 155-159, 1970
    Kogan, F., et al., Modelling corn production inChina using AVHRR-based vegetation health Indices, International Journal of Remote Sensing, 26(11), 2325-2336, 2005
    Kruse, F. A., Use of Airborne Imaging Spectrometer data to map minerals associated with hydrothermally altered rocks in the northern Grapevine Mountains, Nevada and California,, Remote Sensing of Environment, 24(1), 31-51, 1988
    Lasaponara, R., On the use of principal component analysis (PCA) for evaluating interannual vegetation anomalies from SPOT/VEGETATION NDVI temporal series, Ecological Modelling, 194(4), 429-434, 2006
    Liang, S., et al., An operational atmospheric correction algorithm for Landsat Thematic Mapper imagery over the land, Journal of Geophysical Research, 102(D14), 17173-17186, 1997
    Liu, C. C., Processing of FORMOSAT-2 Daily Revisit Imagery for Site Surveillance, Geoscience and Remote Sensing, IEEE Transactions on, 44(11), 3206-3214, 2006
    Liu, C. C., et al., Image processing of FORMOSAT-2 data for monitoring the South Asia tsunami, International Journal of Remote Sensing, 28(13-14), 3093-3111, 2007
    Liu, C. H., A Simple Atmospheric Correction Model for ROCSAT-2 RSI Data, Terrestrial, Atmospheric and Oceanic Sciences, 14(4), 505-514, 2003
    Liu, H. Q., and A. Huete, A feedback based modification of the NDVI to minimize canopy background and atmospheric noise, Geoscience and Remote Sensing, IEEE Transactions on, 33(2), 457-465, 1995
    Ma, B. L., et al., Early Prediction of Soybean Yield from Canopy Reflectance Measurements, Agron J, 93(6), 1227-1234, 2001
    Macdonald, R. B., A summary of the history of the development of automated remote sensing for agricultural applications International Geoscience and Remote Sensing Symposium (IGARSS '83), San Francisco, CA; United States, 1983
    Moran, M. S., et al., Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output, Remote Sensing of Environment, 41(2), 169-184, 1992
    Moulin, S., et al., Global-Scale Assessment of Vegetation Phenology Using NOAA/AVHRR Satellite Measurements, Journal of Climate, 10(6), 1154-1170, 1997
    Nemani, R., et al., Forest ecosystem process at the watershed scale: sensitivity to remotely-sensed leaf area index estimates, International Journal of Remote Sensing, 14(13), 2519-2534, 1993
    P.J. Pinter, J., et al., Remote Sensing for Crop Management, Photogrammetric Engineering and Remote Sensing, 69(6), 647-664, 2003
    Price, J. C., Estimating vegetation amount from visible and near infrared reflectances, Remote Sensing of Environment, 41(1), 29-34, 1992
    Price, J. C., and W. C. Bausch, Leaf Area Index Estimation From Visible and Near-Infrared Reflectance Data, Remote Sensing of Environment, 52, 55-65, 1995
    Rasmussen, M. S., Operational yield forecast using AVHRR NDVI data: reduction of environmental and inter-annual variability, International Journal of Remote Sensing, 18(5), 1059-1077, 1997
    Rouse, J. W., et al., Monitoring the Vernal Advancement and Retrogradation (greenwave Effect) of Natural Vegetation, Texas A & M University, Remote Sensing Center. 1974
    Schroeder, T. A., et al., Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon, Remote Sensing of Environment, 103(1), 16-26, 2006
    Seiter, S., et al., Forage Soybean Yield and Quality Responses to Plant Density and Row Distance, Agron J, 96(4), 966-970, 2004
    Sellers, P. J., Canopy reflectance, photosynthesis and transpiration, International Journal of Remote Sensing, 6(8), 1335-1372, 1985
    Shieh, Y.-J., Growth and community photosynthesis of rice plants in the first and second crop seasons, In:Proceedings of the Symposium on the Causes of Low Yield of the Second Crop Rice in Taiwan and the Measures for Improvement, 91-100, 1978
    Smith, G. M., and E. J. Milton, The use of the empirical line method to calibrate remotely sensed data to reflectance, International Journal of Remote Sensing, 20, 2653-2662, 1999
    Song, C., et al., Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects?, Remote Sensing of Environment, 75(2), 230-244, 2001
    Song, C., and C. E. Woodcock, Monitoring forest succession with multitemporal Landsat images: factors of uncertainty, Geoscience and Remote Sensing, IEEE Transactions on, 41(11), 2557-2567, 2003
    Spanner, M. A., et al., The seasonality of AVHRR data of temperate coniferous forests: Relationship with leaf area index, Remote Sensing of Environment, 33(2), 97-112, 1990
    Su, M. R., and C. M. Yang, Estimation of rice growth from reflectance spectra of vegetative cover, J. Photogram. Remote Sens, 4(4), 13-23, 1999
    Teillet, P. M., and G. Fedosejevs, On the dark target approach to atmospheric correction of remotely sensed data, Canadian Journal of Remote Sensing, 21(4), 374-387, 1995
    Tucker, C. J., Red and photographic infrared linear combinations for monitoring vegetation, Remote Sensing of Environment(8), 127-150, 1979
    Tucker, C. J., et al., Satellite remote sensing of total herbaceous biomass production in the senegalese sahel: 1980-1984, Remote Sensing of Environment, 17(3), 233-249, 1985
    Vermote, E. F., et al., Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview, Geoscience and Remote Sensing, IEEE Transactions on, 35(3), 675-686, 1997
    Wiegand, C. L., et al., Vegetation indices in crop assessments, Remote Sensing of Environment, 35(2-3), 105-119, 1991
    Wiegand, C. L., et al., Multisite analyses of spectral-biophysical data for wheat, Remote Sensing of Environment, 42(1), 1-21, 1992
    Yang, C., et al., Comparison of QuickBird Satellite Imagery and Airborne Imagery for Mapping Grain Sorghum Yield Patterns, Precision Agriculture, 7(1), 33-44, 2006
    Yang, C. M., and M. R. Su, Analysis of reflectance spectrum of rice canopy, Chin.J.Agrometeorol(4), 87-95, 1997
    Yang, C. M., 以遙測技術探討環境對水稻生產之影響, 161-180, 1999
    Yang, C. M., and R. K. Chen, Modeling Rice Growth with Hyperspectral Reflectance Data, Crop Sci, 44(4), 1283-1290, 2004
    Yang, C. M., and R. K. Chen, Potential for Using FORMOSAT-II Data Simulated by Hyperspectral Reflectance to Estimate Growth and Predict Yield of Rice, Taiwan Agriculture Research, 54(1), 54-69, 2005
    Yang, C. M., and R. K. Chen, Differences in Growth Estimation and Yield Prediction of Rice Crop Using Satellites Data Simulated from Near Ground Hyperspectral Reflectance, Photogrammetry and Remote Sensing, 12(1), 93-105, 2007
    Zarco-Tejada, P. J., et al., Temporal and Spatial Relationships between Within-Field Yield Variability in Cotton and High-Spatial Hyperspectral Remote Sensing Imagery, Agron J, 97(3), 641-653, 2005
    Zeng, L., and M. C. Shannon, Effects of Salinity on Grain Yield and Yield Components of Rice at Different Seeding Densities, Agronomy Journal, 92(3), 418-423, 2000
    王成璦, et al., 栽培密度對水稻產量及品質的影響, 瀋陽農業大學學報, 35(4), 318-322, 2004
    申雍, et al., 應用遙測技術推估水稻產量之初探, 農業試驗所特刊-應用於水稻精準農業體系之知識與技術, 101, 39-50, 2002
    吳啟南, et al., 衛星及地面遙測資料應用於水稻生長及產量監測初步研究, 農業試驗所特刊-應用於水稻精準農業體系之知識與技術, 101, 19-38, 2002
    張維恕, 應用衛星遙測影像進行大肚台地紅土範圍界定與中央山脈裸岩區之岩性分析 國立成功大學碩士論文 2006
    章國威, et al., 應用抽穗期多光譜航照影像預估水稻產量之研究, Photogrammetry and Remote Sensing, 11(1), 27-38, 2006
    楊純明, and 林俊義, 水稻精準農業(耕)體系之研究, 129 pp., 行政院農業委員會農業試驗所,臺中縣. 2002
    劉振榮, et al., 應用機載多光譜遙測資料預估水稻產量之研究, Photogrammetry and Remote Sensing, 8(4), 71-82, 2004
    劉廣員, and 邱金桓, 衛星對地遙感應用中的鄰近效應研究, Chinese Journal of Atmospheric Sciences, 28(002), 311-319, 2004

    下載圖示 校內:2008-07-31公開
    校外:2008-07-31公開
    QR CODE