| 研究生: |
程柏諺 Cheng, Bo-Yan |
|---|---|
| 論文名稱: |
四氧化釩鉍-二氧化鈦異質奈米結構光陽極於光電化學分解水之應用 BiVO4-TiO2 Nanostructured Heterojunction Photoanode for Photoelectrochemical Water Oxidation |
| 指導教授: |
吳季珍
Wu, Jih-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 四氧化釩鉍 、二氧化鈦 、金屬有機物分解法 、異質奈米結構 、光陽極 、光電化學分解水 |
| 外文關鍵詞: | BiVO4, TiO2, metal organic decomposition method, nanostructured heterojunction, photoanode, photoelectrochemical water oxidation |
| 相關次數: | 點閱:98 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以金屬有機物分解法成長四氧化釩鉍具孔洞性的薄膜,並將其應用於光電化學分解水。同時也以水熱法結合化學浴法先成長二氧化鈦層於導電玻璃基板,繼以沉積四氧化釩鉍,以建構二氧化鈦-四氧化釩鉍異質奈米結構。研究結果顯示,兩光電極在1.23V vs RHE,最高可達到0.8 mA/cm2 。當電壓高於1.23V後,二氧化鈦-四氧化釩鉍異質奈米結構光陽極,則具有較高之光電流。進一步以過氧化氫為電洞犧牲試劑分析得知,二氧化鈦-四氧化釩鉍電極電荷分離效率較四氧化釩鉍電極高,而電荷注入效率則較低。繼以電沉積法於二氧化鈦-四氧化釩鉍電極表面上成長共觸媒Co-Pi,起始電壓往左位移,且在1.23V vs RHE下光電流提升了104 %,可達1.61 mA/cm2。
In this work, porous bismuth vanadate (BiVO4) thin film has been deposited on fluorine-doped tin oxide (FTO) by metal organic decomposition for the application to photoelectrochemical water splitting. Titanium oxide (TiO2) thin layer which is grown by combing hydrothermal method and chemical bath deposition is developed between FTO and BiVO4 for increasing the photocurrent density in photoelectrochemical water oxidation. The results show that an optimal TiO2-BiVO4 nanostructured heterojunction photoanode produces a photocurrent density of 0.8 mA/cm2 at a potential of 1.23V versus RHE under illumination of AM 1.5G (100 mWcm-2). By using hydrogen peroxide (H2O2) as a hole scavenger, it demonstrates that charge separation efficiency in the TiO2-BiVO4 photoanode is superior to that in the BiVO4 photoanode. However, charge injection efficiency in the TiO2-BiVO4 photoanode is lower than that in the BiVO4 photoanode. By depositing cocatalyst Co-Pi on the surface of TiO2-BiVO4 photoanode, the onset potential shift toward the cathodic direction. A 104 % increase of the photocurrent density at a potential of 1.23V versus RHE is measured in the Co-Pi/ TiO2-BiVO4 photoanode.
1. H. Ahmad, S.K. Kamarudin, L.J. Mingguand M. Kassim, 'Hydrogen from Photo-Catalytic Water Splitting Process: A Review'. Renewable and Sustainable Energy Reviews, 43, 599-610 (2015)
2. A. Fujishima and K. Honda, 'Electrochemical Photolysis of Water at a Semiconductor Electrode'. Nature, 238, 37-38 (1972)
3. A. Kudo and Y. Miseki, 'Heterogeneous Photocatalyst Materials for Water Splitting'. Chemical Society Reviews, 38, 253-278 (2009)
4. A. Kudo, 'Photocatalyst Materials for Water Splitting'. Catalysis Surveys from Asia, 7, 31-38 (2003)
5. A. Kudo, H. Katoand I. Tsuji, 'Strategies for the Development of Visible-Light-Driven Photocatalysts for Water Splitting'. Chemistry Letters, 33, 1534-1539 (2004)
6. A. Mills and S. Le Hunte, 'An Overview of Semiconductor Photocatalysis'. Journal of Photochemistry and Photobiology A: Chemistry, 108, 1-35 (1997)
7. M. Gratzel, 'Photoelectrochemical Cells'. Nature, 414, 338-344 (2001)
8. F.E. Osterloh, 'Inorganic Materials as Catalysts for Photochemical Splitting of Water'. Chemistry of Materials, 20, 35-54 (2008)
9. H. Kato, M. Hori, R. Konta, Y. Shimodairaand A. Kudo, 'Construction of Z-Scheme Type Heterogeneous Photocatalysis Systems for Water Splitting into H2 and O2 under Visible Light Irradiation'. Chemistry Letters, 33, 1348-1349 (2004)
10. R. Abe, K. Sayamaand H. Sugihara, 'Development of New Photocatalytic Water Splitting into H2 and O2 Using Two Different Semiconductor Photocatalysts and a Shuttle Redox Mediator IO3-/I'. The Journal of Physical Chemistry B, 109, 16052-16061 (2005)
11. A. Kudo, 'Development of Photocatalyst Materials for Water Splitting'. International Journal of Hydrogen Energy, 31, 197-202 (2006)
12. M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpoand J.M. Thomas, 'Photocatalysis for New Energy Production: Recent Advances in Photocatalytic Water Splitting Reactions for Hydrogen Production'. Catalysis Today, 122, 51-61 (2007)
13. Y. Matsumoto, U. Unal, N. Tanaka, A. Kudoand H. Kato, 'Electrochemical Approach to Evaluate the Mechanism of Photocatalytic Water Splitting on Oxide Photocatalysts'. Journal of Solid State Chemistry, 177, 4205-4212 (2004)
14. J. N. Nian, C. C. Huand H. Teng, 'Electrodeposited P-Type Cu2O for H2 Evolution from Photoelectrolysis of Water under Visible Light Illumination'. International Journal of Hydrogen Energy, 33, 2897-2903 (2008)
15. Y. Matsumoto, A. Funatsu, D. Matsuo, U. Unaland K. Ozawa, 'Electrochemistry of Titanate(Iv) Layered Oxides'. The Journal of Physical Chemistry B, 105, 10893-10899 (2001)
16. H. Kato and A. Kudo, 'Water Splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3 (a = Li, Na, and K)'. The Journal of Physical Chemistry B, 105, 4285-4292 (2001)
17. T. Ishihara, H. Nishiguchi, K. Fukamachiand Y. Takita, 'Effects of Acceptor Doping to KTaO3 on Photocatalytic Decomposition of Pure H2O'. The Journal of Physical Chemistry B, 103, 1-3 (1999)
18. C.H. Liao, C.W. Huangand J.C.S. Wu, 'Hydrogen Production from Semiconductor-Based Photocatalysis Via Water Splitting'. Catalysts, 2, 490-516 (2012)
19. K. Rajeshwar, 'Hydrogen Generation at Irradiated Oxide Semiconductor–Solution Interfaces'. Journal of Applied Electrochemistry, 37, 765-787 (2007)
20. H. Kato and A. Kudo, 'Photocatalytic Water Splitting into H2 and O2 over Various Tantalate Photocatalysts'. Catalysis Today, 78, 561-569 (2003)
21. T. Bak, J. Nowotny, M. Rekasand C.C. Sorrell, 'Photo-Electrochemical Hydrogen Generation from Water Using Solar Energy. Materials-Related Aspects'. International Journal of Hydrogen Energy, 27, 991-1022 (2002)
22. R. Abe, 'Recent Progress on Photocatalytic and Photoelectrochemical Water Splitting under Visible Light Irradiation'. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11, 179-209 (2010)
23. R.M. Navarro Yerga, M.C. Álvarez Galván, F. del Valle, J.A. Villoria de la Manoand J.L.G. Fierro, 'Water Splitting on Semiconductor Catalysts under Visible-Light Irradiation'. ChemSusChem, 2, 471-485 (2009)
24. L.J. Minggu, W.R.W. Daudand M.B. Kassim, 'An Overview of Photocells and Photoreactors for Photoelectrochemical Water Splitting'. International Journal of Hydrogen Energy, 35, 5233-5244 (2010)
25. A.J. Nozik and R. Memming, 'Physical Chemistry of Semiconductor−Liquid Interfaces'. The Journal of Physical Chemistry, 100, 13061-13078 (1996)
26. N. Chandra, B.L. Wheelerand A.J. Bard, 'Semiconductor Electrodes. 59. Photocurrent Efficiencies at P-Indium Phosphide Electrodes in Aqueous Solutions'. The Journal of Physical Chemistry, 89, 5037-5040 (1985)
27. J. Cao, T. Kako, P. Li, S. Ouyangand J. Ye, 'Fabrication of P-Type CaFe2O4 Nanofilms for Photoelectrochemical Hydrogen Generation'. Electrochemistry Communications, 13, 275-278 (2011)
28. W.B. Ingler and S.U.M. Khan, 'A Self-Driven P/N- Fe2O3 Tandem Photoelectrochemical Cell for Water Splitting'. Electrochemical and Solid State Letters, 9, G144-G146 (2006)
29. Y. Shaogui, Q. Xie, L. Xinyong, L. Yazi, C. Shuoand C. Guohua, 'Preparation, Characterization and Photoelectrocatalytic Properties of Nanocrystalline Fe2O3/TiO2, ZnO/TiO2, and Fe2O3/ZnO/TiO2 Composite Film Electrodes Towards Pentachlorophenol Degradation'. Physical Chemistry Chemical Physics, 6, 659-664 (2004)
30. E.L. Miller, R.E. Rocheleauand X.M. Deng, 'Design Considerations for a Hybrid Amorphous Silicon/Photoelectrochemical Multijunction Cell for Hydrogen Production'. International Journal of Hydrogen Energy, 28, 615-623 (2003)
31. G. CA, V. OKand R. S., 'Light, Water, Hydrogen - the Solar Generation of Hydrogen by Water Photoelectrolysis'. New York, US: Spinger, (section 3.3,p. 123) (2008)
32. A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications. Vol. 2. 1980: Wiley New York.
33. T. Bak, J. Nowotny, M. Rekasand C.C. Sorrell, 'Photo-Electrochemical Properties of the TiO2-Pt System in Aqueous Solutions'. International Journal of Hydrogen Energy, 27, 19-26 (2002)
34. A. Currao, V. Raja Reddy, M.K. van Veen, R.E.I. Schroppand G. Calzaferri, 'Water Splitting with Silver Chloride Photoanodes and Amorphous Silicon Solar Cells'. Photochemical & Photobiological Sciences, 3, 1017-1025 (2004)
35. B. O'Regan and M. Gratzel, 'A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films'. Nature, 353, 737-740 (1991)
36. E.L. Miller, D. Paluselli, B. Marsenand R.E. Rocheleau, 'Development of Reactively Sputtered Metal Oxide Films for Hydrogen-Producing Hybrid Multijunction Photoelectrodes'. Solar Energy Materials and Solar Cells, 88, 131-144 (2005)
37. O. Khaselev, A. Bansaland J.A. Turner, 'High-Efficiency Integrated Multijunction Photovoltaic/Electrolysis Systems for Hydrogen Production'. International Journal of Hydrogen Energy, 26, 127-132 (2001)
38. M. Graetzel and J. Augustynski, Tandem Cell for Water Cleavage by Visible Light. 2005.
39. Z. F. Huang, L. Pan, J. J. Zou, X. Zhangand L. Wang, 'Nanostructured Bismuth Vanadate-Based Materials for Solar-Energy-Driven Water Oxidation: A Review on Recent Progress'. Nanoscale, 6, 14044-14063 (2014)
40. Y. Park, K.J. McDonaldand K. S. Choi, 'Progress in Bismuth Vanadate Photoanodes for Use in Solar Water Oxidation'. Chemical Society Reviews, 42, 2321-2337 (2013)
41. A. Walsh, Y. Yan, M.N. Huda, M.M. Al-Jassimand S. H. Wei, 'Band Edge Electronic Structure of BiVO4: Elucidating the Role of the BiS and Vd Orbitals'. Chemistry of Materials, 21, 547-551 (2009)
42. M.S. Prévot and K. Sivula, 'Photoelectrochemical Tandem Cells for Solar Water Splitting'. The Journal of Physical Chemistry C, 117, 17879-17893 (2013)
43. F.F. Abdi, N. Firetand R. van de Krol, 'Efficient BiVO4 Thin Film Photoanodes Modified with Cobalt Phosphate Catalyst and W-Doping'. ChemCatChem, 5, 490-496 (2013)
44. A.J.E. Rettie, H.C. Lee, L.G. Marshall, J. F. Lin, C. Capan, J. Lindemuth, J.S. McCloy, J. Zhou, A.J. Bardand C.B. Mullins, 'Combined Charge Carrier Transport and Photoelectrochemical Characterization of BiVO4 Single Crystals: Intrinsic Behavior of a Complex Metal Oxide'. Journal of the American Chemical Society, 135, 11389-11396 (2013)
45. K.J. McDonald and K. S. Choi, 'A New Electrochemical Synthesis Route for a BiOI Electrode and Its Conversion to a Highly Efficient Porous BiVO4 Photoanode for Solar Water Oxidation'. Energy & Environmental Science, 5, 8553-8557 (2012)
46. A. Galembeck and O.L. Alves, ' BiVO4 Thin Film Preparation by Metalorganic Decomposition'. Thin Solid Films, 365, 90-93 (2000)
47. K. Sayama, A. Nomura, Z. Zou, R. Abe, Y. Abeand H. Arakawa, 'Photoelectrochemical Decomposition of Water on Nanocrystalline BiVO4 Film Electrodes under Visible Light'. Chemical Communications, 2908-2909 (2003)
48. W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yuand Z. Zou, 'Solar Hydrogen Generation from Seawater with a Modified BiVO4 Photoanode'. Energy & Environmental Science, 4, 4046-4051 (2011)
49. N. Myung, S. Ham, S. Choi, Y. Chae, W.G. Kim, Y.J. Jeon, K.J. Paeng, W. Chanmanee, N.R. de Tacconiand K. Rajeshwar, 'Tailoring Interfaces for Electrochemical Synthesis of Semiconductor Films: BiVO4, Bi2O3, or Composites'. Journal of Physical Chemistry C, 115, 7793-7800 (2011)
50. J.A. Seabold and K. S. Choi, 'Efficient and Stable Photo-Oxidation of Water by a Bismuth Vanadate Photoanode Coupled with an Iron Oxyhydroxide Oxygen Evolution Catalyst'. Journal of the American Chemical Society, 134, 2186-2192 (2012)
51. S.P. Berglund, D.W. Flaherty, N.T. Hahn, A.J. Bardand C.B. Mullins, 'Photoelectrochemical Oxidation of Water Using Nanostructured BiVO4 Films'. The Journal of Physical Chemistry C, 115, 3794-3802 (2011)
52. 汪建民主編, 材料分析. 中國材料科學學會 (1998).
53. www.purdue.edu/ehps/rem/rs/sem.htm, Scanning Electron Microscope.
54. www.aandb.com.tw/Page0004/uv_vis_04_lambda_850.htm,紫外光/可見光分光光譜儀產品介紹.
55. D.K. Zhong, S. Choiand D.R. Gamelin, 'Near-Complete Suppression of Surface Recombination in Solar Photoelectrolysis by “Co-Pi” Catalyst-Modified W: BiVO4'. Journal of the American Chemical Society, 133, 18370-18377 (2011)
56. J. S. Yang, W. H. Lin, C. Y. Lin, B. S. Wangand J. J. Wu, 'N-Fe2O3 to N+-TiO2 Heterojunction Photoanode for Photoelectrochemical Water Oxidation'. ACS Applied Materials & Interfaces, 7, 13314-13321 (2015)
57. J. Yu and A. Kudo, 'Effects of Structural Variation on the Photocatalytic Performance of Hydrothermally Synthesized BiVO4'. Advanced Functional Materials, 16, 2163-2169 (2006)
58. H. Dotan, K. Sivula, M. Gratzel, A. Rothschildand S.C. Warren, 'Probing the Photoelectrochemical Properties of Hematite ([Small Alpha]-Fe2O3) Electrodes Using Hydrogen Peroxide as a Hole Scavenger'. Energy & Environmental Science, 4, 958-964 (2011)
59. D.K. Zhong, M. Cornuz, K. Sivula, M. Gratzeland D.R. Gamelin, 'Photo-Assisted Electrodeposition of Cobalt-Phosphate (Co-Pi) Catalyst on Hematite Photoanodes for Solar Water Oxidation'. Energy & Environmental Science, 4, 1759-1764 (2011)
校內:2020-09-01公開