簡易檢索 / 詳目顯示

研究生: 何宗勳
He, Zong-Syun
論文名稱: 銫原子中階梯式電磁誘發透明的躍遷特性
Transition Properties of Ladder-type Electromagnetically Induced Transparency in Cesium Atoms
指導教授: 蔡錦俊
Tsai, Chin-Chun
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 112
中文關鍵詞: 銫原子階梯式電磁誘發透明綴飾態都卜勒速度群積分11s 精細結構磁耦常數躍遷機率與躍遷強度雙光子螢光光耦極阱
外文關鍵詞: Cesium, Ladder-type EIT, dressed state, Doppler velocity integration, 11s hyperfine magnetical coupling constant, transition probability and transition strength, two-photon fluorescence, Rabi frequency, dipole trap, FORT
相關次數: 點閱:176下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文對於銫原子在室溫下的階梯式電磁誘發透明現象做探討,其中包含
    量測雷德堡原子的磁耦常數、波茲曼-馬克斯威爾速度群造成的效應和綴飾態
    能階分裂的修正;此外,來自於不同躍遷能階的電磁誘發透明彼此之間的相對
    強度關係也將會在此探討,論文最後將討論電磁誘發透明和其反應在雙光子躍
    遷訊號下的線寬大小。本論文中的數值模擬分析採用解出光學布拉格和光泵激
    發方程式來模擬原子在光和原子的交互作用後造成的現象來做討論。本論文主
    要分為三大主題,第一個主題為利用室溫下電磁誘發透明窄線寬的特性量得銫
    原子11s 2S1/2 的磁耦常數A=38.81±0.23 MHz,此實驗中的光譜除了由探測光和耦合光間的波長不匹配因子修正綴飾態的能階分裂間距外,也使用另一道校正
    光束來校正雷射掃頻下的頻率軸,利用電磁誘發透明的同調性特質使較弱躍遷
    強度的雷德堡態能階的精細結構亦可以量得。承接第一個主題,第二個主題探
    討光泵激發效應造成不同躍遷能階的電磁誘發透明彼此之間的相對強度的差
    異,探測光束和耦合光束不單只是產生量子干涉效應,其也會造成原子在黎曼
    能階上居量分佈的重新排列,分析的結果顯示參與作用的原子數多寡將造成電
    磁誘發透明的強度有所不同。第三個主題是研究室溫下階梯式電磁誘發透明的
    線寬和其穿透度的探討,當探測光束很弱 (1.3 μW/cm2 (0.003Γ2)) 且耦合光束的Rabi frequency 大小在13.32 MHz =1.8Γ(Γ=Γ2+Γ3)的情況下,線寬低於Γ的電磁誘發透明依然可以觀測的到,此外,當耦合光束光強減弱時,量子破壞性干涉所造成的線寬可低至2.9 MHz (=0.39Γ);另一方面,藉由雙光子躍遷螢光
    減少程度可以推得知電磁誘發透明的穿透效率約為25%,此項結果間接證明在
    室溫系統下低的穿透率是不可避免的。

    This dissertation reports the studies on the phenomenon of the ladder-type electromagnetically
    induced transparency (EIT) in a room-temperature cesium cell, including the measurement
    of magnetic dipole constant of Cs 11s 2S1/2, the effects of Boltzmann-Maxwell velocity
    groups, and the modification of dressed state interval. Besides, the relative EIT intensities
    owing to different transitions is investigated. Furthermore, EIT behaviors reflecting on
    the two-photon excitations are explored as well. To simulate the experimental spectrum, a
    numerical results by solving optical Bloch equations regarding coherence and decoherence,
    and rate equations about optical pumping are introduced.
    In simplicity, there are three topics in this dissertation. First, the hyperfine interval of
    Cs 11s 2S1/2 is determined by using the ladder-type EIT. In this experiment, the magnetic
    dipole constant of Cs 11s 2S1/2 is measured through two narrow-linewidth laser fields.
    The EIT doublets are observed, and the EIT spectrum is identified by introducing the
    wavelength mismatching factor under the dressed state scheme. Theoretical simulation
    is performed by obtaining the solutions of optical Bloch equations and integrating them
    over Doppler velocities, optical-pumping and two-photon coherence effects. Simulation
    results correlate well with experimental data. Finally, the magnetic dipole constant of Cs
    11s 2S1/2 A=38.81±0.23 MHz is elucidated by adding a calibration field to increase the
    accuracy of the frequency scale.
    Second, the relative intensities of the probe transmission in a ladder-type EIT are studied by considering the optical pumping effect between each Zeeman sublevels of the involved
    transitions. The relative EIT intensities from different transitions remain a task so far. The
    observed EIT spectra reveal a different probe or coupling power dependence for various
    transmission peaks. In addition to causing quantum interference, the probe and coupling
    laser fields realign the population of Zeeman sublevels in the ground state through optical
    pumping. Analytic results indicate that the re-distribution levels failing to contribute
    to the EIT peaks, either out of the transition path or zero transition probability, will
    significantly affect the transmission intensity.
    In the last topic, the subnatural linewidth, i.e., below Γ(= Γ2 + Γ3), in a ladder-type
    EIT can be achieved in a room-temperature cesium cell, even though the coupling Rabi
    frequency is as large as 1.8Γ. Under a low-light-level probe regime (1.3 μW/cm2 (0.003Γ2))
    and weak coupling power, the narrowest EIT linewidth is 2.9 MHz (= 0.39Γ). Both the
    transmission of the probe field and the dip on the two-photon excitation fluorescence
    exhibit the subnatural linewidth behavior. At the room temperature, the transmittance
    of the probe field has to integrate over the Doppler velocity distribution, which will shrink
    the transmission linewidth due to the probe and coupling wavelength mismatch. The
    EIT transparency rate derived from the loss of fluorescence is about 25%. This result
    proves that the low transparency rate is inevitable when EIT is applied in the thermal
    vapor. Finally, the simulation results by solving the optical Bloch equations are in good
    agreement with both EIT and two-photon excitation fluorescence.

    Abstract i Abstract in Chinese iii Acknowledgments iv Contents vi List of Tables ix List of Figures x 1 Introduction 1 1.1 Electromagnetically Induced Transparency (EIT) . . . . . . . . . . . . . . 1 1.2 EIT and Dressed State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Overview of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Theoretical Description 11 2.1 Atom-light Interaction in a Two-level Atom . . . . . . . . . . . . . . . . . 11 2.1.1 A two-level atom approximation . . . . . . . . . . . . . . . . . . . . 11 2.1.2 Absorption of laser field in atomic medium . . . . . . . . . . . . . . 13 2.1.3 The pictures of quantum mechanics . . . . . . . . . . . . . . . . . . 18 2.1.4 Density matrix approach . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 Ladder-type Electromagnetically Induced Transparency . . . . . . . . . . . 28 2.2.1 Density matrix approach in three levels . . . . . . . . . . . . . . . . 28 2.2.2 The EIT Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.3 Optical pumping effect . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2.4 EIT in Doppler-broadening medium . . . . . . . . . . . . . . . . . . 40 3 Determination of the Hyperfine Magnetic Coupling Constant 45 3.1 Theoretical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.1 Modification of dressed state . . . . . . . . . . . . . . . . . . . . . . 47 3.1.2 Hyperfine structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3 Experimental Observation and Analysis . . . . . . . . . . . . . . . . . . . . 52 3.3.1 Observation of EIT spectrum . . . . . . . . . . . . . . . . . . . . . 52 3.3.2 Label of the transitions of EIT spectrum . . . . . . . . . . . . . . . 52 3.3.3 Simulation of EIT spectrum . . . . . . . . . . . . . . . . . . . . . . 54 3.3.4 Determination the hyperfine magnetic coupling constant . . . . . . 55 3.4 Conclusion on this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4 Electromagnetically Induced Transparency with Optical Pumping Effect 58 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2 Experimental Setup and Observation . . . . . . . . . . . . . . . . . . . . . 60 4.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2.2 Experimental observation . . . . . . . . . . . . . . . . . . . . . . . 62 4.3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3.1 The real transparency of EIT . . . . . . . . . . . . . . . . . . . . . 65 4.3.2 Optical pumping effect on EIT . . . . . . . . . . . . . . . . . . . . 66 4.3.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.5 Conclusion on this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5 Low-light-level Ladder-type Electromagnetically Induced Transparency and Two-step Excitation 76 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2 Experimental Setup and Observation . . . . . . . . . . . . . . . . . . . . . 79 5.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.2.2 Experimental observation . . . . . . . . . . . . . . . . . . . . . . . 81 5.3 Experimental Discussion and Analysis . . . . . . . . . . . . . . . . . . . . 83 5.3.1 EIT linewidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.3.2 Transparency rate of EIT . . . . . . . . . . . . . . . . . . . . . . . 86 5.4 Conclusion on this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6 Conclusion and Future Work 89 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 References 92 Appendices 101 A The Relaxation Matrix of the Optical Bloch Equation 101 B The Rabi Frequency 104 B.1 The Rabi Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 B.2 The Calculation of the Rabi Frequency . . . . . . . . . . . . . . . . . . . . 107 C The Optical Dipole Trap 109

    [1] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Light speed reduction to 17
    metres per second in an ultracold atomic gas, Nature 397, 594 (1999).
    [2] S. E. Harris, J. E. Field, and A. Imamoˇglu, Non-linear optical processes using electromagnetically
    induced transparency, Phys. Rev. Lett. 64, 1107 (1990).
    [3] S. E. Harris, Electromagnetically induced transparency, Phys. Today, June, 36 (1997).
    [4] M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, Measurement of Dispersive
    Properties of Electromagnetically Induced Transparency in Rubidium Atoms, Phys.
    Rev. Lett. 74, 666 (1995).
    [5] U. Fano, EEffects of Configuration Interaction on Intensities and Phase Shifts, Phys.
    Rev. 124, 1866 (1961).
    [6] W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Quantum Zeno
    effect, Phys. Rev. A 41, 2295 (1990).
    [7] O. Kocharovskaya, and P. Mandel, Amplification without inversion: The double-Λ
    scheme, Phys. Rev. A 42, 523 (1990).
    [8] M. O. Scully, S. Y. Zhu, and A. Gavrieliedes, Degenerate quantum-beat laser: Lasing
    without inversion and inversion without lasing, Phys. Rev. Lett. 62, 2813 (1989).
    [9] S. E. Harris, Lasers Without Inversion: Interference of Lifetime-Broadened Resonances,
    Phys. Rev. Lett. 62, 1033 (1989).
    [10] S. E. Harris and J. J. Macklin, Lasers Without Inversion: Single-Atom Transient
    Response, Phys. Rev. A 40, 4135 (1989).
    [11] A. Imamoˇglu and S. E. Harris, Lasers Without Inversion: Interference of Dressed
    Lifetime-Broadened States, Opt. Lett. 14, 1344 (1989).
    [12] S. Alam, Lasers without Inversion and Electromagnetically Induced Transparency,
    SPIE Press, Bellingham, United States, 1999.
    [13] K. Bergmann, H. Theuer, and B. W. Shore, Coherent population transfer among
    quantum states of atoms and molecules, Rev. Mod. Phys. 70, 1003 (1998).
    [14] B. Lounis and C. Cohen-Tannoudji, Coherent population trapping and Fano profiles,
    J. Phys. II, Paris, 2, 579 (1992).
    [15] J. P. Marangos, Topical review Electromagnetically induced transparency, J. Mod.
    Opt. 45, 3, 471 (1998).
    [16] Y.Wu and X. Yang, Electromagnetically induced transparency in V -, Λ-, and cascadetype
    schemes beyond steady-state analysis, Phys. Rev. A 71, 053806 (2005).
    [17] D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, Continuouswave
    electromagnetically induced transparency: A comparison of V , Λ, and cascade
    systems, Phys. Rev. A 52, 2302 (1995).
    [18] M. Fleischhauer, A. Imamoˇglu, and J. P. Marangos, Electromagnetically induced
    transparency: optics in coherent media, Rev. Mod. Phys. 77, 633 (2005).
    [19] D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, Storage
    of Light in Atomic Vapor, Phys. Rev. Lett. 86, 783 (2001).
    [20] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Observation of coherent optical
    information storage in an atomic medium using halted light pulses, Nature 409, 490
    (2001).
    [21] Y. F. Chen, S. H. Wang, C. Y. Wang, and I. A. Yu, Manipulating the retrieved width
    of stored light pulses, Phys. Rev. A 72, 053803 (2005).
    [22] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble,
    Photon blockade in an optical cavity with one trapped atom, Nature 436, 87 (2005).
    [23] S. Wielandy and A. L. Gaeta, Investigation of electromagnetically induced transparency
    in the strong probe regime, Phys. Rev. A 58, 2500 (1998).
    [24] K. Pandey and V. Natarajan, Splitting of electromagnetically induced transparency
    under strong-probe conditions due to Doppler averaging, J. Phys. B: At. Mol. Opt.
    Phys. 41, 185504 (2008).
    [25] A. Imamoˇglu, H. Schmidt1, G. Woods, and M. Deutsch, Strongly Interacting Photons
    in a Nonlinear Cavity, Phys. Rev. Lett. 79, 1467 (1997).
    [26] P. Grangier, Daniel F. Walls, and K. M. Gheri, Comment on ”Strongly Interacting
    Photons in a Nonlinear Cavity”, Phys. Rev. Lett. 81, 2833 (1998).
    [27] M. Albert, A. Dantan, and M. Drewsen, Cavity electromagnetically induced transparency
    and all-optical switching using ion Coulomb crystals, Nature Photonics 5,
    633 (2011).
    [28] C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, Classical analog of electromagnetically
    induced transparency, Am. J. Phys. 70, 37 (2002).
    [29] A. K. Mohapatra, T. R. Jackson, and C. S. Adams, Coherent Optical Detection of
    Highly Excited Rydberg States Using Electromagnetically Induced Transparency, Phys.
    Rev. Lett. 98, 113003 (2007).
    [30] M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh,
    Measurement of absolute transition frequencies of 87Rb to nS and nD Rydberg states by
    means of electromagnetically induced transparency, Phys. Rev. A 83, 052515 (2011).
    [31] A. Krishna, K. Pandey, A. Wasan, and V. Natarajan, High-resolution hyperfine spectroscopy
    of excited states using electromagnetically induced transparency, Europhys.
    Lett. 72, 221 (2005).
    [32] R. Y. Chang, Y. C. Lee, W. C. Fang, M. T. Lee, Z. S. He, B. C. Ke, and C. C. Tsai, A
    narrow window of Rabi frequency for competition between electromagnetically induced
    transparency and Raman absorption, J. Opt. Soc. Am. B 27, 85 (2010).
    [33] R. Y. Chang, W. C. Fang, Z. S. He, B. C. Ke, P. N. Chen, and C. C. Tsai, Doubly
    dressed states in a ladder-type system with electromagnetically induced transparency,
    Phys. Rev. A 76, 053420 (2007).
    [34] S. H. Autler and C. H. Townes, Stark effect in rapidly varying fields, Phys. Rev. 100,
    703 (1955).
    [35] L. Yang, L. Zhang,X. Li, L. Han, G. Fu, N. B. Manson, D Suter, and C. Wei, Autler-
    Townes effect in a strongly driven electromagnetically induced transparency resonance,
    Phys. Rev. A 72, 053801 (2005).
    [36] Y. Q. Li and M. Xiao, Observation of quantum interference between dressed states in
    an electromagnetically induced transparency, Phys. Rev. A 51, 4959 (1995).
    [37] S. M. Iftiquar, G. R. Karve, and Vasant Natarajan, Subnatural linewidth for probe
    absorption in an electromagnetically-induced-transparency medium due to Doppler averaging,
    Phys. Rev. A 77, 063807 (2008).
    [38] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions:
    Basic Process and Appilcations, Wiley Press, New York , 1992.
    [39] M. Fox, Quantum Optics: An Introduction, Oxford University Press, Sheffield, 2006.
    [40] C. J. Foot, Atomic Physics, Oxford University Press, Oxford, 2005.
    [41] E. Hecht, Optics (4th Edition), Addison-Wesley Press, Adelphi, 2001.
    [42] J. D. Jackson, Classical Electrodynamics (3rd Edition), Wiley Press, Berkeley, California,
    1998.
    [43] W. Demtröder, Laser Spectroscopy: Vol. 1: Basic Principles, Springer Press, Kaiserslautern,
    2008.
    [44] D. J. Griffiths, Introduction to Quantum Mechanics (2nd Edition), Pearson Prentice
    Hall Press, Reed, 2004.
    [45] N. Zettili, Quantum Mechanics: Concepts and Applications, Wiley Press, Jacksonville,
    2001.
    [46] M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press,
    Cabrage, UK, 1997.
    [47] M. Sargent III, M. O. Scully, and W. E. Lamb Jr., Laser Physics, Addison-Wesley
    Press, Reading, Mass., 1974.
    [48] C. C. Gerry and P. L. Knight, Introductory Quantum Optics, Cambridge University
    Press, Cabrage, UK, 2005.
    [49] W. Happer, Optical Pumping, Rev. Mod. Phys. 44, 169 (1972).
    [50] W. Franzen and A.G. Emslie, Atomic Orientation by Optical Pumping,Phys. Rev.
    108, 1453 (1957).
    [51] M. Krainska-Miszczak, Alignment and orientation by optical pumping with pi polarised
    light, J. Phys. B 12, 555 (1979).
    [52] P. M. Farrell and W. R. MacGillivray, On the consistency of Rabi frequency calculations,
    J. Phys. A 28, 209 (1995).
    [53] J. E. Stalnaker, V. Mbele, V. Gerginov, T. M. Fortier, S. A. Diddams, L. Hollberg,
    and C. E. Tanner, Femtosecond frequency comb measurement of absolute frequencies
    and hyperfine coupling constants in cesium vapor, Phys. Rev. A 81, 043840 (2010).
    [54] Y. Y. Chang, V-Type Electromagnetically Induced Transparency in Cesium atom,
    Master Thesis, National Chen Kung University (2010).
    [55] D. Halliday, R. Resnick, and K. S Krane, Physics (5th Edition), Wiley Press, New
    York, 2002.
    [56] R. M. Eisberg and R. Resnick, Quantum physics of atoms, molecules, solids, nuclei,
    and particles (2nd Edition), Wiley Press, New York , 1985.
    [57] C. H. Tsai, Measure the Hyperfine Structure of the 11S State of Cesium by Using
    Electromagnetically Induced Transparency, Master Thesis, National Chen Kung University
    (2011).
    [58] D. DiBerardino and C. E. Tanner,Lifetime measurements of cesium 5d 2D5/2,3/2 and
    11s 2S1/2 states using pulsed-laser excitation, Phys. Rev. A 57, 4204 (1998).
    [59] V. Gerginov, A. Derevianko, and C. E. Tanner,Observation of the Nuclear Magnetic
    Octupole Moment of 133Cs, Phys. Rev. Lett. 91, 072501 (2003).
    [60] B. R. Mollow, Power Spectrum of Light Scattered by Two-Level Systems, Phys. Rev.
    188, 1969 (1969).
    [61] J. J. Clarke, W. A. van Wijngaarden, and H. Chen, Electromagnetically induced
    transparency using a vapor cell and a laser-cooled sample of cesium atoms, Phys.
    Rev. A 64, 023818 (2001).
    [62] S. Shepherd, D. J. Fulton, and M. H. Dunn, Wavelength dependence of coherently
    induced transparency in a Doppler-broadened cascade medium, Phys. Rev. A 54, 5394
    (1996).
    [63] H. Haken and H. C. Wolf, The Physics of Atoms and Quanta Introduction to Experiments
    and Theory (6th Edition), Springer-Verlag Berlin Heidelberg, New York,
    2000.
    [64] C. B. Alcock, V. P. Itkin, and M. K. Horrigan, VAPOR PRESSURE OF THE
    METALLIC ELEMENTS, Can. Metal. Q. 23, 309 (1984).
    [65] R. Y. Chang, W. C. Fang, B. C. Ke, Z. S. He, M. D. Tsai, Y. C. Lee, and C. C. Tsai,
    Suppression and recovery of the trapping of atoms using a ladder-type electromagnetically
    induced transparency, Phys. Rev. A 76, 055404 (2007).
    [66] H. R. Noh and H. S. Moon, Calculation of line shapes in double-resonance optical
    pumping, Phys. Rev. A 80, 022509 (2009).
    [67] P. Tsekeris, R. Gupta, W. Happer, G. Belin, and S. Svanberg, Determination of
    hyperfine structure of highly excited S states in alkali atoms using a CW dye laser,
    Phys. Lett. A. 48, 101 (1974).
    [68] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Observation of coherent optical
    information storage in an atomic medium using halted light pulses, Nature(London)
    409, 490 (2001).
    [69] S. E. Harris and Y. Yamamoto, Photon Switching by Quantum Interference, Phys.
    Rev. Lett. 81, 3611(1998).
    [70] M. Yan, E. G. Rickey, and Y. Zhu, Observation of absorptive photon switching by
    quantum interference, Phys. Rev. A 64, 041801(R) (2001).
    [71] W. B. Hawkins and R. H. Dicke, The Polarization of Sodium Atoms, Phys. Rev. 91,
    1008 (1953).
    [72] H. S. Moon, L. Lee, and J. B. Kim, Double-resonance optical pumping of Rb atoms,
    J. Opt. Soc. Am. B 24, 2157 (2007).
    [73] D. McGloin, M. H. Dunn, and D. J. Fulton, Polarization effects in electromagnetically
    induced transparency, Phys. Rev. A 62, 053802 (2000).
    [74] H. S. Moon, L. Lee, and J. B. Kim, Double resonance optical pumping effects in
    electromagnetically induced transparency, Opt. Express 16, 12163 (2008).
    [75] H. S. Moon and H. R. Noh, Polarization dependence of double-resonance optical pumping
    and electromagnetically induced transparency in the 5S1/2−5P3/2−5D5/2 transition
    of 87Rb atoms, Phys. Rev. A 84, 033821 (2011).
    [76] H. R. Noh and H. S. Moon, Diagrammatic analysis of multiphoton processes in a
    ladder-type three-level atomic system, Phys. Rev. A 84, 053827 (2011).
    [77] B. Yang, J. Gao, T. Zhang, and J. Wang, Electromagnetically induced transparency
    without a Doppler background in a multilevel ladder-type cesium atomic system, Phys.
    Rev. A 83, 013818 (2011).
    [78] H. R. Noh and H. S. Moon, Transmittance signal in real ladder-type atoms, Phys.
    Rev. A 85, 033817 (2012).
    [79] Z. S. He, J. H. Tsai, M. T.Lee, Y. Y. Chang, C. C. Tsai, and T. J. Whang, Determination
    of the Cesium 11s2S1/2 Hyperfine Magnetic Coupling Constant Using
    Electromagnetically Induced Transparency, J. Phys. Soc. Jpn. 81, 124302 (2012).
    [80] J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, Electromagnetically induced
    transparency in ladder-type inhomogeneously broadened media: Theory and experiment,
    Phys. Rev. A 51, 576 (1995).
    [81] R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, Two-photon
    effects in continuous-wave electromagnetically-induced transparency, Opt. Commun.
    119, 61 (1995).
    [82] S. Brandt, A. Nagel, R. Wynands, and D. Meschede, Buffer-gas-induced linewidth
    reduction of coherent dark resonances to below 50 Hz, Phys. Rev. A 56, R1063 (1997).
    [83] N. Mulchan, D. G. Ducreay, R. Pina, M. Yan, and Y. Zhu, Nonlinear excitation by
    quantum interference in a Doppler-broadened rubidium atomic system, J. Opt. Soc.
    Am. B 17, 820 (2000).
    [84] M. Yan, E. G. Rickey, and Y. Zhu, Nonlinear absorption by quantum inteference in
    cold atoms, Opt. Lett. 26, 548 (2001).
    [85] Danielle A. Braje, Vlatko Bali´c, G. Y. Yin, and S. E. Harris, Low-light-level nonlinear
    optics with slow light, Phys. Rev. A 68, 041801(R) (2003).
    [86] Z. S. He, J. H. Tsai, Y. Y. Chang, C. C. Liao, and C. C. Tsai, Ladder-type electromagnetically
    induced transparency with optical pumping effect, Phys. Rev. A 87,
    033402 (2013).
    [87] G. Alessandretti, F. Chiarini, G. Gorini and F. Petrucci, Measurement of the Cs
    8S-Level Lifetime , Opt. Commun. 20, 289 (1977).
    [88] P. R. S. Carvalho, Lu´is E. E. de Araujo, and J. W. R. Tabosa, Angular dependence of
    an electromagnetically induced transparency resonance in a Doppler-broadened atomic
    vapor, Phys. Rev. A 70, 063818 (2004).
    [89] F. Goldfarb, J. Ghosh, M. David, J. Ruggiero, T. Chanelière, J.-L. Le Gouët, H.
    Gilles, R. Ghosh, and F. Bretenaker, Observation of ultra-narrow electromagnetically
    induced transparency and slow light using purely electronic spins in a hot atomic vapor,
    Europhys. Lett. 82, 54002 (2008).
    [90] E. L. Raab, M. Prentiss, Alex Cable, Steven Chu, and D. E. Pritchard, Trapping of
    Neutral Sodium Atoms with Radiation Pressure, Phys. Rev. Lett. 59, 2631 (1987).
    [91] C. Wieman, G. Flowers, and S. Gilbert, Inexpensive laser cooling and trapping experiment
    for undergraduate laboratories, Am. J. Phys. 63, 317 (1995).
    [92] Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu,
    Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay,
    Phys. Rev. Lett. 110, 083601 (2013).
    [93] M. H. Anderson, W. Petrich, J. R. Ensher, and E. A. Cornell, Reduction of lightassisted
    collisional loss rate from a low-pressure vapor-cell trap, Phys. Rev. A 50,
    R3597 (1994).
    [94] C. Fort, F. S. Cataliotti, M. Prevedelli, and M. Inguscio, Temperature-selective trapping
    of atoms in a dark state by means of quantum interference, Opt. Lett. 22, 14,
    1107 (1997).
    [95] J. Y. Kim and D. Cho, Dark-Spot Magneto-Optical Trap of Cesium Atoms, J. Korean
    Phys. Soc. 39, 5, 864 (2001)
    [96] R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, Optical dipole traps for neutral
    atoms, Adv. At. Mol. Opt. Phy. 42, 95 (2000)
    [97] D. Boiron, A. Michaud, J. M. Fournier, L. Simard1, M. Sprenger, G. Grynberg, and
    C. Salomon, Cold and dense cesium clouds in far-detuned dipole traps, Phys. Rev. A
    57, R4106 (1998).
    [98] K. L. Corwin, S. J. M. Kuppens, D. Cho, and C. E. Wieman, Spin-Polarized Atoms
    in a Circularly Polarized Optical Dipole Trap, Phys. Rev. Lett. 83, 1311 (1999).
    [99] S. J. M. Kuppens, K. L. Corwin, K. W. Miller, T. E. Chupp, and C. E. Wieman,
    Loading an optical dipole trap, Phys. Rev. A 62, 013406 (2000).
    [100] I. I. Rabi, Space Quantization in a Gyrating Magnetic Field, Phys. Rev. 51, 652
    (1937).
    [101] Daniel A. Steck, “Cesium D Line Data” available online at http://steck.us/alkalidata
    (revision 2.1.4, 23 December 2010).
    [102] H. J. Metcalf, P. van der Straten, P. Straten, Laser Cooling and Trapping, Springer,
    1999.
    [103] H. W. Lin, Experimental Study of Loading Cesium Atoms from a Magneto-Optical
    Trap to an Optical Dipole Trap, Master Thesis, National Chen Kung University
    (2010).
    [104] D. Boiron, C. Triché, D. R. Meacher, P. Verkerk, and G. Grynberg, Threedimensional
    cooling of cesium atoms in four-beam gray optical molasses, Phys. Rev.
    A 52, R3425 (1995).
    [105] C. Triché, P. Verkerka, and G. Grynbergb, Blue-Sisyphus cooling in cesium gray
    molasses and antidot lattices, Eur. Phys. J. D 5, 225 (1999).

    下載圖示 校內:2016-07-12公開
    校外:2016-07-12公開
    QR CODE