簡易檢索 / 詳目顯示

研究生: 黃琬惠
Huang, Wan-Hui
論文名稱: 高速鐵路列車延誤之研究
High Speed Rail Train Delay Analysis
指導教授: 鄭永祥
Cheng, Yung-Hsiang
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系碩士在職專班
Department of Transportation and Communication Management Science(on-the-job training program)
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 66
中文關鍵詞: 線性迴歸羅吉斯迴歸延誤鐵路事故分析
外文關鍵詞: Linear Regression, Logistic Regression, Delay, Railway incident analysis
相關次數: 點閱:134下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高鐵的誕生導致台灣地區中、長程旅客運輸市場由原本的國內航空服務為主,逐漸被鐵路系統取代。近年來,高鐵旅運人次逐年提升,儼然已成為國人不可或缺的交通運輸工具,一日生活圈的生活模式隨之成形,造就了國內產業結構的改變。爰此,運輸服務的可靠度及滿意度逐漸受到重視,一旦有事故發生,運轉安全及旅客服務須同時兼顧。盡速完成故障排除、恢復安全的通行環境為各鐵路業者的首要目標;此外,對延遲時間的掌握度越高,盡速提供旅客必要的延誤資訊,將能協助旅客判斷其行程被干擾的嚴重程度,對於旅客滿意度有直接的影響,也對鐵路業者的決策判斷及營收影響有很大的助益。
    本研究透過台灣高鐵公司2013年至2018年間的延誤資料,嘗試利用敘述性統計、線性迴歸、羅吉斯迴歸等模式,針對各種影響列車延誤的相關變數進行分析,瞭解其對列車延誤影響的程度。研究結果顯示,運用上述模式在列車延誤的分析均達到預期效果,有助於探討列車延誤因子的影響程度。路線容量、案件類別、事故地點、前往處置所花費的交通時間、處置過程所耗費的時間、備用車組數等因素都對於延誤時間呈現顯著的影響;而備用車組數與列車延誤呈現負相關,對高鐵公司計畫性的車組運用決策上具參考價值。

    The medium to long distance transportation market in Taiwan has gradually shifted from domestic airlines to railway systems since the introduction of high speed rail. With increasing ridership over the past years, high speed rail has become an essential mode of transport in Taiwan, leading to the formation of “one day peripheral circle” and the change of industry structure. The importance of reliability and customer satisfaction for transportation services is therefore growing. When incidents occur, both operation safety and customer services are to be considered. The first priority for railway operators has been to complete troubleshooting and resume safe operation in the shortest time possible.
    Furthermore, with increased control over time delay and the provision of necessary delay information to customers, customer satisfaction is directly impacted since passengers are able to evaluate the extent of trip interruption. Railway operators are also benefited in decision making and operation revenue.
    This study uses the delay data from Taiwan High Speed Rail during 2013 to 2018, with the adoption of different models including descriptive statistics, linear regression and logistic regression, to analyze different delay variables and understand the impact on train delay. This study demonstrates that all the above models provided anticipated results on delay analysis and supported the evaluation of the impact on train delay factors. The line capacity, case category, location of incident, travel time
    to site, time spent on the handling process and number of standby trainsets showed statistically significant effect on delay time, whilst the number of standby trainsets was negatively correlated with train delay.
    These results provide reference values to Taiwan High Speed Rail on trainset utilization plans.

    第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 4 1.3 研究範疇 5 1.4 研究流程與架構 5 第二章 文獻回顧 7 2.1 前言 7 2.2 鐵路系統可靠度衡量 7 2.3 鐵路系統延誤對旅客服務的影響 10 2.4 鐵路系統的延誤分析模式 11 第三章 研究方法 15 3.1 概述 15 3.2 研究方法 15 3.2.1 敘述性統計 15 3.2.2 線性迴歸模式 15 3.2.3 羅吉斯迴歸 18 第四章 資料描述 24 4.1 資料蒐集過程及內容 24 4.2 高鐵事故資料分析 26 4.3 延誤時間分布 27 4.4 研究變數說明 28 4.4.1 依變數 29 4.4.2 自變數 29 第五章 實證研究 42 5.1 概述 42 5.2 線性迴歸 46 5.3羅吉斯迴歸模式 51 5.4 列車延誤模式小結 56 第六章 結論與建議 59 6.1 結論 59 6.2 建議 60 參考文獻 64

    1.鍾志成等,2011。軌道系統容量與可靠度分析研究(1/3),交通部運輸研究所。
    2.陳心一,2000。台鐵對號列車延誤預測之研究,成功大學交通管理科學系碩士論文。
    3.台灣高速鐵路股份有限公司年報,2019。
    4.Higgins A., Kozan E., 1998. Modeling Train Delays in Urban Networks. Transportation Science 32(4):346-357.
    5.Alexander B, Patricia C. M., Judith M. C., Richard J. A., 2013. Passenger-Focused Management Approach to Measurement of Train Delay Impacts, Transportation Research Record: Journal of the Transportation Research Board, No. 2351, Transportation Research Board of the National Academies, Washington, D.C., 46–53.
    6.Cheng Y.H., Yang L.A., 2009. A Fuzzy Petri Nets approach for railway traffic control in case of abnormality: Evidence from Taiwan railway system. Expert Systems with Applications 36, 8040–8048. 1-9.
    7.Cheng Y.H., Huang T.Y., 2014. High speed rail passenger segmentation and ticketing channel preference, Transportation Research Part A 66, 127–143.
    8.Cheng Y.H., Tsai Y.C., 2014. Train delay and perceived-wait time: passengers' perspective, Transport Reviews, 34:6, 710-729, DOI: 10.1080/ 01441647.2014.975169
    9.Gorman M.F., 2009. Statistical estimation of railroad congestion delay, Transportation Research Part E 45, 446–456.
    10.Hansen I. A., Pachl J., 2008. Railway timetable and traffic - Analysis _ Modelling Simulation, Eurailpress DW Rail Media (DW Media Group GmbH).
    11.Hansen I.A., Goverde R.M.P., Dirk J. van der Meer, 2010. Online Train Delay Recognition and Running Time Prediction, IEEE Annual Conference on Intelligent Transportation Systems Madeira Island, Portugal, September 19-22.
    12.Jong J.C., Lin T. H., Lee C. K. and Hu H. L., 2010. The Analysis on Train Reliability of Taiwan High Speed Rail, Proceedings of 12th COMPRAIL Conference, Wessex Institute of Technology, 169-180.
    13.Meester L. E., Muns S., 2007. Stochastic delay propagation in railway networks and phase-type distributions. Transportation Research Part B 41, 218- 230.
    14.Murali P., Dessouky M.M., Ordóñez F. Palmer K., 2009. A delay estimation technique for single and double-track railroad, Transportation Research Part E.
    15.Nelson D., O’Neil K., 2012. Commuter Rail Service Reliability On-Time Performance and Causes for Delays, Transportation Research Record, Vol. 1704, 42-50.
    16.Olssona N.O.E., Haugland H., 2004. Influencing factors on train punctuality—results from some Norwegian studies, Transport Policy 11, 387–397.
    17.Rietveld P., Bruinsma F. R., Van Vuuren D. J., 2001. Coping with Unreliability in Public Transport Chains: a Case for the Netherlands, Transportation Research Part A 35, 539-559.
    18.Rob.M.P., 2010. A delay propagation algorithm for large-scale railway traffic networks, Transportation Research Part C 18, 269–287.
    19.Vansteenwegen P., Van Oudheusden D., 2006. Developing railway timetables which guarantee a better service, European Journal of Operational Research 173, 337–35.
    20.Vromans M.J.C.M., Dekker R., Kroon L.G., 2006. Reliability and heterogeneity of railway services, European Journal of Operational Research 172, 647-665.
    21.Lee Y., Chen C.Y., 2009. A heuristic for the train pathing and timetabling problem. Transportation Research Part B 43, 837-851.
    22.Yaghini M. et al., 2012. Railway passenger train delay prediction via neural network model, Journal of advanced transportation in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/atr.193
    23.Long, J. Scott, 1997. Regression Models for Categorical and Limited Dependent Variables. Advanced Quantitative Techniques in the Social Sciences Thousand Oaks, CA: Sage.
    24.Peduzzi P et al., 1996. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol.1996 Dec; 49(12):1373-9.
    25.MM de Faverges, et al., 2018. Estimating Long-Term Delay Risk with Generalized Linear Models. 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Nov 2018, Maui, France. pp.2911-2916.
    26.Grechi D, Maggi E, 2018. The importance of punctuality in rail transport investigation on the delay determinants. European Transport Trasporti Europei, 2018. Issue 70, Paper n° 2.
    27.Dollevoet T, Huisman D, Kroon L, Schmidt M, Schöbel A , 2015. Delay Management Including Capacities of Stations. Transportation Science 49(2):185-203.
    28.Fu Q and Easton JM, 2018. Prediction of Weather-Related Incidents on the Rail Network: Prototype Data Model for Wind-Related Delays in Great Britain. e ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, ISSN 2376-7642.
    29.Ohshima K, Yamamoto K, 2020. Contributing Factors for Train Delays during Morning Rush Hour in Japanese Metropolitan Areas, Journal of Transportation Technologies, 2020, 10, 154-168.

    無法下載圖示 校內:2025-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE