簡易檢索 / 詳目顯示

研究生: 武若婷
Wu, Jo-Ting
論文名稱: 短鏈脂肪酸在內生性恐懼反應以及社交行為所扮演的角色
The role of short-chain fatty acid in innate fear response and social behavior
指導教授: 吳偉立
Wu, Wei-Li
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 112
中文關鍵詞: 短鏈脂肪酸廣效性抗生素β酸內生性恐懼類焦慮行為社交行為下視丘-腦下垂體-腎上腺軸
外文關鍵詞: Short-chain fatty acid (SCFA), Antibiotic cocktail (ABX), β-acid, Innate fear response, Anxiety-like behavior, Social behavior, Hypothalamic-pituitary-adrenal (HPA) axis
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在腸胃道與大腦之間的溝通中,腸道細菌所調控的化學分子扮演著重要的角色。短鏈脂肪酸是腸道細菌在發酵過程中的主要產物,過去的研究中短鏈脂肪酸被指出與小鼠的類焦慮、類憂鬱、社交行為與壓力反應表現相關。然而何種短鏈脂肪酸以及短鏈脂肪酸如何調控情緒功能仍然不清楚。在本論文中探討了內源性的短鏈脂肪酸是否在內生性恐懼反應與社交行為上扮演著調控者的角色。第一部分,在小鼠飲水中添加廣效型抗生素來清除腸道共生細菌及降低體內短鏈脂肪酸,並且另外在飲水中添加了短鏈脂肪酸,然後來進行小鼠在不同光照程度下開放空間試驗與高架十字迷宮這兩種標準評估小鼠類焦慮與內生性恐懼反應的測試。結果發現在廣效型抗生素處理的小鼠中對於高光照的條件下所造成的內生性恐懼反應具有抗性,而添加了短鏈脂肪酸後能恢復小鼠的內生性恐懼反應。此外在飲水中添加β酸來抑制腸道細菌所產生的短鏈脂肪酸的組別中,發現了在暗的條件下β酸降低了小鼠在新環境中的移動距離,而在類焦慮相關行為測試上並無差異。第二部分,在廣效型抗生素與短鏈脂肪酸處理的小鼠組別中測試了牠們的社交互動行為反應,並沒有觀察到短鏈脂肪酸對於社交行為與自我理毛的行為有任何效果。第三部分,為了想了解短鏈脂肪酸是否透過壓力賀爾蒙及下視丘-腦下垂體-腎上腺路徑來調控小鼠行為,進行了多項不同的測試。社交行為後血清中的皮質酮與壓力所導致的體溫增高的量測中沒有觀察到短鏈脂肪酸添加於抗生素飲水小鼠與抗生素處理小鼠有顯著差異。分析腎上腺的短鏈脂肪酸受體與類固醇生成基因表現,顯示在短鏈脂肪酸處理的小鼠中腎上腺的短鏈脂肪酸受體表現有下降的現象。利用初代腎上腺細胞培養實驗發現在促腎上腺皮質激素刺激下腎上腺皮質酮的分泌增加,添加了短鏈脂肪酸後降低了腎上腺皮質酮分泌,結果顯示短鏈脂肪酸可以直接作用在腎上腺上達到抑制壓力反應的效果。這些結果指出在成年時期缺乏腸道細菌時可以降低內生性恐懼的反應表現,短鏈脂肪酸可能是扮演著調控內生性恐懼反應的重要角色。

    Gut bacteria-mediated chemicals are the candidates for the modulation of the gut-brain communication. Short-chain fatty acid (SCFA), the major gut bacteria-mediated fermentation products, have been postulated to be involved in anxiety-, depressive-like, social behaviors and stress-responsiveness in mice. However, what and how SCFA regulate the emotion are still unclear. In this study, I aim to investigate whether endogenous SCFA is crucial for modulating the innate fear response and social behavior. At first, the SCFA was administered in the regular drinking water in adult mice treated with broad spectrum of antibiotic cocktail (ABX) to deplete the microbiota and then the mice were tested the open-field test (OFT) and elevated plus maze (EPM), two golden standard tests assessing the anxiety-like and innate fear response, under the dim light and bright light condition. Interestingly, ABX-treated mice were more resilient to the bright light condition, while ABX-treated mice supplemented with SCFA displayed a robust avoiding behavior in both OFT and EPM when lit up the testing chamber. Next, β-acid was administered in the drinking water of adult mice with the intact microbiome to inhibit the bacterial fermentation. Treatment of β-acid in mice reduced locomotion under dim light condition compared to the control mice but did not produce any effect on innate fear response or social behavior. Second, the reciprocal social interaction test was performed in ABX-treated mice supplemented with SCFA to evaluate the social behavior outcome. However, no effect of either ABX or SCFA on social activity and self-grooming behavior was observed. Third, to investigate whether if the SCFA modulates host behavior via hypothalamic-pituitary-adrenal (HPA) axis, several approaches were conducted. The corticosterone levels and stress-induced hyperthermia were not altered in the serum in microbiota-depleted mice administered SCFA after social stress. Next, the effect of SCFA on the SCFA receptors and steroidogenesis related gene expression in the adrenal gland was investigated and found that the Ffar2, one receptor for SCFA, gene expression decreased in the SCFA-treated mice. Primary culture of adrenocortical cells demonstrated that SCFA can alleviate the increase of corticosterone-induced by adrenocorticotropic hormone (ACTH). These findings suggest that lack of gut microbiota at the adult stage interrupts the innate fear response while administering SCFA to microbiota-depleted mice could restore their innate fear response.

    中文摘要 I Abstract  II 致謝  V 目錄  VI 圖目錄 XI 表目錄 XIII 第一章 前言 1 1. 腸腦軸 1 a. 腸腦之間溝通的路徑 1 b. 下視丘-腦下垂體-腎上腺軸 2 c. 腸道共生細菌對於宿主內生性恐懼行為的影響 3 d. 腸道共生細菌對於宿主社交行為的影響 4 e. 腸道細菌的代謝物對於行為的影響 5 2. 短鏈脂肪酸 5 a. 短鏈脂肪酸的主要來源與分佈 5 b. 短鏈脂肪酸在腸胃道系統的功能 7 c. 短鏈脂肪酸在神經系統的功能 7 d. 短鏈脂肪酸的受體與訊息傳遞路徑 8 e. 短鏈脂肪酸與精神障礙 9 f. 短鏈脂肪酸對於宿主行為的影響 10 3. 內生性恐懼反應以及焦慮行為 11 a. 內生性恐懼反應與焦慮行為的相關腦區 11 b. 內生性恐懼反應與焦慮行為與抑制型神經元 11 4. 內生性恐懼與社交行為測試 11 a. 內生性恐懼反應與類焦慮反應的小鼠行為測試 11 b. 小鼠社交行為測試 12 5. 完全無菌鼠與廣效型抗生素處理的短鏈脂肪酸與行為的表現 13 a. 完全無菌鼠與抗生素處置小鼠模式的差異 13 b. 完全無菌鼠與抗生素處理後小鼠糞便中短鏈脂肪酸濃度 14 c. 完全無菌鼠在類焦慮行為測試的表現 15 d. 完全無菌鼠在社交行為測試的表現 15 e. 廣效型抗生素處理對於小鼠的類焦慮行為影響 15 f. 廣效型抗生素處理對於小鼠的社交行為影響 16 6. β酸 16 a. β酸的來源與用途 16 b. β酸的相關研究 16 7. 研究假說及目的: 17 第二章 材料與方法 18 1. 實驗小鼠 18 2. 實驗設計與時間軸 18 a. 時間軸1(圖1A) 18 b. 時間軸2(圖1B) 18 c. 時間軸3(圖1C) 19 d. 時間軸4(圖1D) 19 3. 小鼠飲水中添加廣效型抗生素之配方 19 4. 小鼠飲水中添加短鏈脂肪酸之配方 19 a. 一般飲水添加短鏈脂肪酸水 19 b. 廣效型抗生素飲水混合短鏈脂肪酸 20 c. 廣效型抗生素加單一短鏈脂肪酸 20 5. 小鼠飲水中添加β酸之配方 20 6. 短效腎上腺皮質酮腹腔注射 21 7. 犧牲與組織採集 21 a. 麻醉 21 b. 心臟採血及血液處置 21 c. 組織秤重與酸鹼值測定 21 d. 多聚甲醛灌流 21 8. 行為 22 a. 開放空間試驗 22 b. 高架十字迷宮 22 c. 利用光照強度增加內生性恐懼反應的環境設置(圖2) 23 d. 社交行為與自我理毛行為 23 9. 腎上腺皮質層細胞培養 23 a. 摘取腎上腺細胞 23 b. 細胞培養 24 c. ACTH與短鏈脂肪酸藥品配製 24 10. 酵素免疫分析法測腎上腺皮質酮濃度 25 11. 利用高效液相層析及質譜儀偵測血清中的短鏈脂肪酸濃度 26 12. 萃取糞便細菌中的DNA 27 13. 定量聚合酶連鎖反應 27 a. RNA萃取 27 b. cDNA反轉錄 28 c. 利用qPCR定量基因表現 29 14. 統計與分析方法 29 第三章 實驗結果 31 1. 利用廣效型抗生素清除腸道細菌的效果 31 2. 廣效型抗生素、短鏈脂肪酸、β酸水處理後小鼠的體重、攝食、飲水量 31 3. 廣效型抗生素、短鏈脂肪酸、β酸水處理後小鼠器官重量 31 4. 廣效型抗生素、短鏈脂肪酸、β酸水處理後小腸與大腸長度 32 5. 廣效型抗生素、短鏈脂肪酸、β酸水處理後血液中的短鏈脂肪酸濃度 33 6. 廣效型抗生素、短鏈脂肪酸、β酸水處理後盲腸與大腸內容物中的酸33 7. 在正常飲水中添加短鏈脂肪酸對小鼠之類焦慮行為測試結果 34 8. 在廣效型抗生素飲水中添加混合短鏈脂肪酸及單一短鏈脂肪酸對小鼠之類焦慮行為測試結果 37 9. 飲水中添加β酸對小鼠之類焦慮行為測試結果 41 10. 一般飲水中與廣效型抗生素組別中添加短鏈脂肪酸對小鼠之社交互動行為與自我理毛行為之影響 44 11. 一般飲水中與廣效型抗生素組別中添加短鏈脂肪酸對社交互動行為所產生的急性壓力所導致的體溫高熱現象之影響 45 12. 一般飲水中與廣效型抗生素組別中添加短鏈脂肪酸對社交互動行為及直腸溫度測試所產生的急性壓力所導致的腎上腺皮質酮濃度上升之影響 45 13. 在一般飲水中與廣效型抗生素組別中添加短鏈脂肪酸小鼠中短期注射腎上腺皮質酮對社交互動行為、自我理毛行為、與腎上腺皮質酮的影響 46 14. 利用腎上腺初代細胞培養來測試短鏈脂肪酸對於壓力反應的緩解作用 46 15. 短鏈脂肪酸受體與腎上腺皮質酮生成的相關基因定量分析 47 第四章 討論 49 第五章 結論 59 第六章 圖 60 第七章 表 94 第八章 參考文獻 96

    Abell, G. C., Conlon, M. A., & McOrist, A. L. (2006). Methanogenic archaea in adult human faecal samples are inversely related to butyrate concentration. Microbial ecology in health and disease, 18(3-4), 154-160.
    Abrams, G. D., Bauer, H., & Sprinz, H. (1963). Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ-free and conventional mice. Lab Invest, 12, 355-364.
    Adams, J. B., Johansen, L. J., Powell, L. D., Quig, D., & Rubin, R. A. (2011). Gastrointestinal flora and gastrointestinal status in children with autism – comparisons to typical children and correlation with autism severity. BMC Gastroenterology, 11(1), 22.
    Ahn, S.-H., Jang, E.-H., Choi, J.-H., Lee, H.-R., Bakes, J., Kong, Y.-Y., & Kaang, B.-K. (2013). Basal anxiety during an open field test is correlated with individual differences in contextually conditioned fear in mice. Animal Cells and Systems, 17(3), 154-159.
    Aluwihare, A. (1971). An ultrastructural study of the effect of neomycin on the colon in the human subject and in the conventional and the germ-free mouse. Gut, 12(5), 341-349.
    Arentsen, T., Raith, H., Qian, Y., Forssberg, H., & Diaz Heijtz, R. (2015). Host microbiota modulates development of social preference in mice. Microb Ecol Health Dis, 26, 29719.
    Babb, J. A., Carini, L. M., Spears, S. L., & Nephew, B. C. (2014). Transgenerational effects of social stress on social behavior, corticosterone, oxytocin, and prolactin in rats. Hormones and Behavior, 65(4), 386-393.
    Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. Science, 307(5717), 1915-1920.
    Bagot, R. C., Tse, Y. C., Nguyen, H.-B., Wong, A. S., Meaney, M. J., & Wong, T. P. (2012). Maternal care influences hippocampal N-methyl-D-aspartate receptor function and dynamic regulation by corticosterone in adulthood. Biological psychiatry, 72(6), 491-498.
    Barcelo, A. (2000). Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut, 46(2), 218-224.
    Bender, A., Breves, G., Stein, J., Leonhard-Marek, S., Schröder, B., & Winckler, C. (2001). Colonic fermentation as affected by antibiotics and acidic pH: Application of an in vitro model. Z Gastroenterol, 39(11), 911-918.
    Bercik, P., & Collins, S. M. (2014). The Effects of Inflammation, Infection and Antibiotics on the Microbiota-Gut-Brain Axis. In microbial endocrinology: the microbiota-gut-brain axis in health and disease (pp. 279-289): Springer New York.
    Bercik, P., Denou, E., Collins, J., Jackson, W., Lu, J., Jury, J., . . . Collins, S. M. (2011). The Intestinal Microbiota Affect Central Levels of Brain-Derived Neurotropic Factor and Behavior in Mice. Gastroenterology, 141(2), 599-609.e593.
    Bonaz, B., Bazin, T., & Pellissier, S. (2018). The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Frontiers in Neuroscience, 12.
    Bourin, M., & Hascoët, M. (2003). The mouse light/dark box test. European Journal of Pharmacology, 463(1-3), 55-65.
    Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Tóth, M., . . . Kundu, P. (2014). The gut microbiota influences blood-brain barrier permeability in mice. Science Translational Medicine, 6(263), 263ra158-263ra158.
    Breit, S., Kupferberg, A., Rogler, G., & Hasler, G. (2018). Vagus Nerve as Modulator of the Brain–Gut Axis in Psychiatric and Inflammatory Disorders. Frontiers in Psychiatry, 9.
    Brown, A. J., Goldsworthy, S. M., Barnes, A. A., Eilert, M. M., Tcheang, L., Daniels, D., . . . Dowell, S. J. (2003). The Orphan G Protein-coupled Receptors GPR41 and GPR43 Are Activated by Propionate and Other Short Chain Carboxylic Acids. Journal of Biological Chemistry, 278(13), 11312-11319.
    Brown, K., Abbott, D. W., Uwiera, R. R. E., & Inglis, G. D. (2018). Removal of the cecum affects intestinal fermentation, enteric bacterial community structure, and acute colitis in mice. Gut Microbes, 9(3), 218-235.
    Buffington, S. A., Di Prisco, G. V., Auchtung, T. A., Ajami, N. J., Petrosino, J. F., & Costa-Mattioli, M. (2016). Microbial Reconstitution Reverses Maternal Diet-Induced Social and Synaptic Deficits in Offspring. Cell, 165(7), 1762-1775.
    Carabotti, M., Scirocco, A., Maselli, M. A., & Severi, C. (2015). The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Annals of gastroenterology: quarterly publication of the Hellenic Society of Gastroenterology, 28(2), 203.
    Carter, B. S., Hamilton, D. E., & Thompson, R. C. (2013). Acute and chronic glucocorticoid treatments regulate astrocyte-enriched mRNAs in multiple brain regions in vivo. Frontiers in Neuroscience, 7.
    Cattaneo, A., Cattane, N., Galluzzi, S., Provasi, S., Lopizzo, N., Festari, C., . . . Frisoni, G. B. (2017). Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiology of Aging, 49, 60-68.
    Charo, I. F., & Ransohoff, R. M. (2006). The many roles of chemokines and chemokine receptors in inflammation. New England Journal of Medicine, 354(6), 610-621.
    Cherbut, C., Ferrier, L., Rozé, C., Anini, Y., Blottière, H., Lecannu, G., & Galmiche, J.-P. (1998). Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat. American Journal of Physiology-Gastrointestinal and Liver Physiology, 275(6), G1415-G1422.
    Choleris, E., Cazzin, L., Lymer, J. M., Amor, T. R., Lu, R., Kavaliers, M., & Valsecchi, P. (2013). Acute corticosterone sexually dimorphically facilitates social learning and inhibits feeding in mice. Neuropharmacology, 75, 191-200.
    Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R. D., Shanahan, F., . . . Cryan, J. F. (2013). The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Molecular psychiatry, 18(6), 666-673.
    Coady, M. J., Chang, M.-H., Charron, F. M., Plata, C., Wallendorff, B., Sah, J. F., . . . Lapointe, J.-Y. (2004). The human tumour suppressor geneSLC5A8expresses a Na+-monocarboxylate cotransporter. The Journal of physiology, 557(3), 719-731.
    Coretti, L., Paparo, L., Riccio, M. P., Amato, F., Cuomo, M., Natale, A., . . . Lembo, F. (2018). Gut Microbiota Features in Young Children With Autism Spectrum Disorders. Frontiers in Microbiology, 9.
    Costello, E. K., Lauber, C. L., Hamady, M., Fierer, N., Gordon, J. I., & Knight, R. (2009). Bacterial community variation in human body habitats across space and time. Science, 326(5960), 1694-1697.
    Crawley, J. N., & Davis, L. G. (1982). Baseline exploratory activity predicts anxiolytic responsiveness to diazepam in five mouse strains. Brain Research Bulletin, 8(6), 609-612.
    Cryan, J. F., O'Riordan, K. J., Cowan, C. S. M., Sandhu, K. V., Bastiaanssen, T. F. S., Boehme, M., . . . Dinan, T. G. (2019). The Microbiota-Gut-Brain Axis. Physiol Rev, 99(4), 1877-2013.
    Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P., & Macfarlane, G. T. (1987). Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut, 28(10), 1221-1227.
    d'Eufemia, P., Celli, M., Finocchiaro, R., Pacifico, L., Viozzi, L., Zaccagnini, M., . . . Giardini, O. (1996). Abnormal intestinal permeability in children with autism. Acta paediatrica, 85(9), 1076-1079.
    Dalile, B., Van Oudenhove, L., Vervliet, B., & Verbeke, K. (2019). The role of short-chain fatty acids in microbiota–gut–brain communication. Nature Reviews Gastroenterology & Hepatology, 16(8), 461-478.
    Daly, K., & Shirazi-Beechey, S. P. (2006). Microarray analysis of butyrate regulated genes in colonic epithelial cells. DNA and cell biology, 25(1), 49-62.
    Dass, N. B., John, A. K., Bassil, A. K., Crumbley, C. W., Shehee, W. R., Maurio, F. P., . . . Sanger, G. J. (2007). The relationship between the effects of short-chain fatty acids on intestinal motility in vitro and GPR43 receptor activation. Neurogastroenterology & Motility, 19(1), 66-74.
    Dawson, A. M., Holdsworth, C. D., & Webb, J. (1964). ABSORPTION OF SHORT CHAIN FATTY ACIDS IN MAN. Proc Soc Exp Biol Med, 117, 97-100.
    De Angelis, M., Piccolo, M., Vannini, L., Siragusa, S., De Giacomo, A., Serrazzanetti, D. I., . . . Francavilla, R. (2013). Fecal Microbiota and Metabolome of Children with Autism and Pervasive Developmental Disorder Not Otherwise Specified. PLoS ONE, 8(10), e76993.
    de Magistris, L., Familiari, V., Pascotto, A., Sapone, A., Frolli, A., Iardino, P., . . . Riegler, G. (2010). Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. Journal of pediatric gastroenterology and nutrition, 51(4), 418-424.
    De Palma, G., Lynch, M. D. J., Lu, J., Dang, V. T., Deng, Y., Jury, J., . . . Bercik, P. (2017). Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Science Translational Medicine, 9(379), eaaf6397.
    de Theije, C. G., Wopereis, H., Ramadan, M., van Eijndthoven, T., Lambert, J., Knol, J., . . . Oozeer, R. (2014). Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun, 37, 197-206.
    de Wied, D., Diamant, M., & Fodor, M. (1993). Central nervous system effects of the neurohypophyseal hormones and related peptides. Frontiers in neuroendocrinology, 14(4), 251-302.
    Demorrow, S. (2018). Role of the Hypothalamic–Pituitary–Adrenal Axis in Health and Disease. International Journal of Molecular Sciences, 19(4), 986.
    Den Besten, G., Van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D.-J., & Bakker, B. M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 54(9), 2325-2340.
    Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T. G., & Cryan, J. F. (2014). Microbiota is essential for social development in the mouse. Molecular psychiatry, 19(2), 146-148.
    Desbonnet, L., Clarke, G., Traplin, A., O’Sullivan, O., Crispie, F., Moloney, R. D., . . . Cryan, J. F. (2015). Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain, behavior, and immunity, 48, 165-173.
    Deshmukh, H. S., Liu, Y., Menkiti, O. R., Mei, J., Dai, N., O'Leary, C. E., . . . Worthen, G. S. (2014). The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nature Medicine, 20(5), 524-530.
    Ellekilde, M., Selfjord, E., Larsen, C. S., Jakesevic, M., Rune, I., Tranberg, B., . . . Licht, T. R. (2014). Transfer of gut microbiota from lean and obese mice to antibiotic-treated mice. Scientific reports, 4(1), 1-8.
    Fasano, A., & Shea-Donohue, T. (2005). Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat Clin Pract Gastroenterol Hepatol, 2(9), 416-422.
    Fernández, J., Redondo-Blanco, S., Gutiérrez-Del-Río, I., Miguélez, E. M., Villar, C. J., & Lombó, F. (2016). Colon microbiota fermentation of dietary prebiotics towards short-chain fatty acids and their roles as anti-inflammatory and antitumour agents: A review. Journal of Functional Foods, 25, 511-522.
    File, S. E. (1980). The use of social interaction as a method for detecting anxiolytic activity of chlordiazepoxide-like drugs. Journal of Neuroscience Methods, 2(3), 219-238.
    Flythe, M. D., & Aiken, G. E. (2010). Effects of hops (Humulus lupulus L.) extract on volatile fatty acid production by rumen bacteria. Journal of Applied Microbiology, 109(4), 1169-1176.
    Forsythe, P., & Kunze, W. A. (2013). Voices from within: gut microbes and the CNS. Cell Mol Life Sci, 70(1), 55-69.
    Fortes, P. M., Albrechet-Souza, L., Vasconcelos, M., Ascoli, B. M., Menegolla, A. P., & De Almeida, R. M. M. (2017). Social instigation and repeated aggressive confrontations in male Swiss mice: analysis of plasma corticosterone, CRF and BDNF levels in limbic brain areas. Trends in Psychiatry and Psychotherapy, 39(2), 98-105.
    Foster, J. A., & McVey Neufeld, K.-A. (2013). Gut–brain axis: how the microbiome influences anxiety and depression. Trends in Neurosciences, 36(5), 305-312.
    Frost, G., Sleeth, M. L., Sahuri-Arisoylu, M., Lizarbe, B., Cerdan, S., Brody, L., . . . Bell, J. D. (2014). The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nature Communications, 5(1).
    Fu, S.-P., Wang, J.-F., Xue, W.-J., Liu, H.-M., Liu, B.-R., Zeng, Y.-L., . . . Liu, J.-X. (2015). Anti-inflammatory effects of BHBA in both in vivo and in vitro Parkinson’s disease models are mediated by GPR109A-dependent mechanisms. Journal of Neuroinflammation, 12(1), 9.
    Fukumoto, S., Tatewaki, M., Yamada, T., Fujimiya, M., Mantyh, C., Voss, M., . . . Takahashi, T. (2003). Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 284(5), R1269-R1276.
    Gacias, M., Gaspari, S., Santos, P.-M. G., Tamburini, S., Andrade, M., Zhang, F., . . . Casaccia, P. (2016). Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior. eLife, 5.
    Ganapathy, V., Thangaraju, M., Gopal, E., Martin, P. M., Itagaki, S., Miyauchi, S., & Prasad, P. D. (2008). Sodium-coupled Monocarboxylate Transporters in Normal Tissues and in Cancer. The AAPS Journal, 10(1), 193-199.
    Gaudier, E., Rival, M., Buisine, M. P., Robineau, I., & Hoebler, C. (2009). Butyrate enemas upregulate Muc genes expression but decrease adherent mucus thickness in mice colon. Physiol Res, 58(1), 111-119.
    Ge, X., Ding, C., Zhao, W., Xu, L., Tian, H., Gong, J., . . . Li, N. (2017). Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. Journal of Translational Medicine, 15(1).
    Gershon, M. D., & Tack, J. (2007). The Serotonin Signaling System: From Basic Understanding To Drug Development for Functional GI Disorders. Gastroenterology, 132(1), 397-414.
    Goldstein, D. S. (2010). Adrenal Responses to Stress. Cellular and Molecular Neurobiology, 30(8), 1433-1440.
    Gondalia, S. V., Palombo, E. A., Knowles, S. R., Cox, S. B., Meyer, D., & Austin, D. W. (2012). Molecular characterisation of gastrointestinal microbiota of children with autism (with and without gastrointestinal dysfunction) and their neurotypical siblings. Autism Research, 5(6), 419-427.
    Gong, S., Miao, Y.-L., Jiao, G.-Z., Sun, M.-J., Li, H., Lin, J., . . . Tan, J.-H. (2015). Dynamics and Correlation of Serum Cortisol and Corticosterone under Different Physiological or Stressful Conditions in Mice. PLoS ONE, 10(2), e0117503.
    Gonzalez-Perez, G., Hicks, A. L., Tekieli, T. M., Radens, C. M., Williams, B. L., & Lamousé-Smith, E. S. N. (2016). Maternal Antibiotic Treatment Impacts Development of the Neonatal Intestinal Microbiome and Antiviral Immunity. The Journal of Immunology, 196(9), 3768-3779.
    Goswami, C., Iwasaki, Y., & Yada, T. (2018). Short-chain fatty acids suppress food intake by activating vagal afferent neurons. The Journal of nutritional biochemistry, 57, 130-135.
    Grenham, S., Clarke, G., Cryan, J. F., & Dinan, T. G. (2011). Brain-gut-microbe communication in health and disease. Front Physiol, 2, 94.
    Gribble, F. M., & Reimann, F. (2019). Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nature Reviews Endocrinology, 15(4), 226-237.
    Griebel, G., Belzung, C., Perrault, G., & Sanger, D. J. (2000). Differences in anxiety-related behaviours and in sensitivity to diazepam in inbred and outbred strains of mice. Psychopharmacology, 148(2), 164-170.
    Guida, F., Turco, F., Iannotta, M., De Gregorio, D., Palumbo, I., Sarnelli, G., . . . Maione, S. (2018). Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain Behav Immun, 67, 230-245.
    Høverstad, T., & Midtvedt, T. (1986). Short-chain fatty acids in germfree mice and rats. J Nutr, 116(9), 1772-1776.
    Høverstad, T., Midtvedt, T., & Bøhmer, T. (1985). Short-chain fatty acids in intestinal content of germfree mice monocontaminated with Escherichia coli or Clostridium difficile. Scand J Gastroenterol, 20(3), 373-380.
    Halestrap, A. P., & Meredith, D. (2004). The SLC16 gene family?from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflügers Archiv European Journal of Physiology, 447(5), 619-628.
    Handley, S. L., & Mithani, S. (1984). Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of ?fear?-motivated behaviour. Naunyn-Schmiedeberg's Archives of Pharmacology, 327(1), 1-5.
    Hansen, Krych, L., Nielsen, D. S., Vogensen, F. K., Hansen, L. H., Sørensen, S. J., . . . Hansen, A. K. (2012). Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia, 55(8), 2285-2294.
    Hansen, A. K. (1995). Antibiotic treatment of nude rats and its impact on the aerobic bacterial flora. Laboratory Animals, 29(1), 37-44.
    Heijtz, R. D., Wang, S., Anuar, F., Qian, Y., Björkholm, B., Samuelsson, A., . . . Pettersson, S. (2011). Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences, 108(7), 3047-3052.
    Herbert. (2014). The Virome in Mammalian Physiology and Disease. Cell, 157(1), 142-150.
    Hester, C. M., Jala, V. R., Langille, M. G., Umar, S., Greiner, K. A., & Haribabu, B. (2015). Fecal microbes, short chain fatty acids, and colorectal cancer across racial/ethnic groups. World journal of gastroenterology: WJG, 21(9), 2759.
    Hoyles, L., Snelling, T., Umlai, U.-K., Nicholson, J. K., Carding, S. R., Glen, R. C., & McArthur, S. (2018). Microbiome–host systems interactions: protective effects of propionate upon the blood–brain barrier. Microbiome, 6(1).
    Hsiao, E. Y., McBride, S. W., Hsien, S., Sharon, G., Hyde, E. R., McCue, T., . . . Petrosino, J. F. (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155(7), 1451-1463.
    Hudson, B. D., Tikhonova, I. G., Pandey, S. K., Ulven, T., & Milligan, G. (2012). Extracellular Ionic Locks Determine Variation in Constitutive Activity and Ligand Potency between Species Orthologs of the Free Fatty Acid Receptors FFA2 and FFA3. Journal of Biological Chemistry, 287(49), 41195-41209.
    Jeppsson, B. W., Brenner, W., Hummel, R. P., James, J. H., & Fischer, J. E. (1979). Increased blood-brain transport of neutral amino acids after portacaval anastomosis in germfree rats. Surg Forum, 30, 396-398.
    Jessica, Yu, K., Gregory, Gauri, Ann, P., Ma, L., . . . Elaine. (2015). Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell, 161(2), 264-276.
    Jiang, H. Y., Zhang, X., Yu, Z. H., Zhang, Z., Deng, M., Zhao, J. H., & Ruan, B. (2018). Altered gut microbiota profile in patients with generalized anxiety disorder. J Psychiatr Res, 104, 130-136.
    Jogia, T., & Ruitenberg, M. J. (2020). Traumatic Spinal Cord Injury and the Gut Microbiota: Current Insights and Future Challenges. Frontiers in Immunology, 11.
    Kaelberer, M. M., Buchanan, K. L., Klein, M. E., Barth, B. B., Montoya, M. M., Shen, X., & Bohórquez, D. V. (2018). A gut-brain neural circuit for nutrient sensory transduction. Science, 361(6408), eaat5236.
    Kang, D.-W., Park, J. G., Ilhan, Z. E., Wallstrom, G., Labaer, J., Adams, J. B., & Krajmalnik-Brown, R. (2013). Reduced Incidence of Prevotella and Other Fermenters in Intestinal Microflora of Autistic Children. PLoS ONE, 8(7), e68322.
    Karaki, S., Mitsui, R., Hayashi, H., Kato, I., Sugiya, H., Iwanaga, T., . . . Kuwahara, A. (2006). Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res, 324(3), 353-360.
    Kelly, J. R., Borre, Y., C, O. B., Patterson, E., El Aidy, S., Deane, J., . . . Dinan, T. G. (2016). Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res, 82, 109-118.
    Kennedy, E. A., King, K. Y., & Baldridge, M. T. (2018). Mouse Microbiota Models: Comparing Germ-Free Mice and Antibiotics Treatment as Tools for Modifying Gut Bacteria. Frontiers in Physiology, 9.
    Kratsman, N., Getselter, D., & Elliott, E. (2016). Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model. Neuropharmacology, 102, 136-145.
    Lamousé-Smith, E. S., Tzeng, A., & Starnbach, M. N. (2011). The Intestinal Flora Is Required to Support Antibody Responses to Systemic Immunization in Infant and Germ Free Mice. PLoS ONE, 6(11), e27662.
    Leclercq, S., Mian, F. M., Stanisz, A. M., Bindels, L. B., Cambier, E., Ben-Amram, H., . . . Bienenstock, J. (2017). Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nature Communications, 8(1), 15062.
    Lesch, K. P., Mayer, S., Disselkamp-Tietze, J., Hoh, A., Wiesman, M., Osterheider, M., & Schulte, H. M. (1990). 5-HT1A receptor responsivity in unipolar depression evaluation of ipsapirone-induced ACTH and cortisol secretion in patients and controls. Biological psychiatry, 28(7), 620-628.
    Lewis, K., Lutgendorff, F., Phan, V., Söderholm, J. D., Sherman, P. M., & McKay, D. M. (2010). Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate. Inflammatory bowel diseases, 16(7), 1138-1148.
    Ley, R. E., Peterson, D. A., & Gordon, J. I. (2006). Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine. Cell, 124(4), 837-848.
    Li, F., Hao, X., Chen, Y., Bai, L., Gao, X., Lian, Z., . . . Tian, Z. (2017). The microbiota maintain homeostasis of liver-resident γδT-17 cells in a lipid antigen/CD1d-dependent manner. Nature Communications, 8(1), 13839.
    Liu, D., Wen, B., Zhu, K., Luo, Y., Li, J., Li, Y., . . . Liu, Z. (2019). Antibiotics-induced perturbations in gut microbial diversity influence metabolic phenotypes in a murine model of high-fat diet-induced obesity. Appl Microbiol Biotechnol, 103(13), 5269-5283.
    Liu, H.-X., Keane, R., Sheng, L., & Wan, Y.-J. Y. (2015). Implications of microbiota and bile acid in liver injury and regeneration. Journal of Hepatology, 63(6), 1502-1510.
    Lopez De Armentia, M. (2004). Firing Properties and Connectivity of Neurons in the Rat Lateral Central Nucleus of the Amygdala. Journal of neurophysiology, 92(3), 1285-1294.
    Lucki, I. (1998). The spectrum of behaviors influenced by serotonin. Biol Psychiatry, 44(3), 151-162.
    Luczynski, P., McVey Neufeld, K.-A., Oriach, C. S., Clarke, G., Dinan, T. G., & Cryan, J. F. (2016). Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. International Journal of Neuropsychopharmacology, 19(8).
    Mao, B., Gu, J., Li, D., Cui, S., Zhao, J., Zhang, H., & Chen, W. (2018). Effects of Different Doses of Fructooligosaccharides (FOS) on the Composition of Mice Fecal Microbiota, Especially the Bifidobacterium Composition. Nutrients, 10(8), 1105.
    Mayer, E. A. (2000). The neurobiology of stress and gastrointestinal disease. Gut, 47(6), 861-869.
    Maynard, C. L., Elson, C. O., Hatton, R. D., & Weaver, C. T. (2012). Reciprocal interactions of the intestinal microbiota and immune system. Nature, 489(7415), 231-241.
    Melchior, C., Desprez, C., Riachi, G., Leroi, A.-M., Déchelotte, P., Achamrah, N., . . . Gourcerol, G. (2020). Anxiety and Depression Profile Is Associated With Eating Disorders in Patients With Irritable Bowel Syndrome. Frontiers in Psychiatry, 10.
    Michels, N., Van de Wiele, T., & De Henauw, S. (2017). Chronic Psychosocial Stress and Gut Health in Children: Associations With Calprotectin and Fecal Short-Chain Fatty Acids. Psychosom Med, 79(8), 927-935.
    Miller, T. L., & Wolin, M. J. (1996). Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Applied and environmental microbiology, 62(5), 1589-1592.
    Modi, S. R., Lee, H. H., Spina, C. S., & Collins, J. J. (2013). Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature, 499(7457), 219-222.
    Moretti, M., Valvassori, S. S., Varela, R. B., Ferreira, C. L., Rochi, N., Benedet, J., . . . Quevedo, J. (2011). Behavioral and neurochemical effects of sodium butyrate in an animal model of mania. Behav Pharmacol, 22(8), 766-772.
    Morís, G., & Vega, J. A. (2003). [Neurotrophic factors: basis for their clinical application]. Neurologia, 18(1), 18-28.
    Moy, S. S., Nadler, J. J., Perez, A., Barbaro, R. P., Johns, J. M., Magnuson, T. R., . . . Crawley, J. N. (2004). Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes, Brain and Behavior, 3(5), 287-302.
    Nøhr, M. K., Egerod, K. L., Christiansen, S. H., Gille, A., Offermanns, S., Schwartz, T. W., & Møller, M. (2015). Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia. Neuroscience, 290, 126-137.
    Nagatsu, T. (1995). Tyrosine hydroxylase: human isoforms, structure and regulation in physiology and pathology. Essays Biochem, 30, 15-35.
    Nankova, B. B., Agarwal, R., Macfabe, D. F., & La Gamma, E. F. (2014). Enteric Bacterial Metabolites Propionic and Butyric Acid Modulate Gene Expression, Including CREB-Dependent Catecholaminergic Neurotransmission, in PC12 Cells - Possible Relevance to Autism Spectrum Disorders. PLoS ONE, 9(8), e103740.
    Neufeld, K. M., Kang, N., Bienenstock, J., & Foster, J. A. (2011). Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterology & Motility, 23(3), 255-e119.
    Nilsson, N. E., Kotarsky, K., Owman, C., & Olde, B. (2003). Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochemical and Biophysical Research Communications, 303(4), 1047-1052.
    O’Mahony, S. M., Felice, V. D., Nally, K., Savignac, H. M., Claesson, M. J., Scully, P., . . . Cryan, J. F. (2014). Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats. Neuroscience, 277, 885-901.
    Oh, H., Ellero-Simatos, S., Manickam, R., Tan, N., Guillou, H., & Wahli, W. (2019). Depletion of Gram-Positive Bacteria Impacts Hepatic Biological Functions During the Light Phase. International Journal of Molecular Sciences, 20(4), 812.
    Pelaseyed, T., Bergström, J. H., Gustafsson, J. K., Ermund, A., Birchenough, G. M. H., Schütte, A., . . . Hansson, G. C. (2014). The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunological Reviews, 260(1), 8-20.
    Pellow, S., Chopin, P., File, S. E., & Briley, M. (1985). Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods, 14(3), 149-167.
    Peng, L., Li, Z.-R., Green, R. S., Holzman, I. R., & Lin, J. (2009). Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers. The Journal of Nutrition, 139(9), 1619-1625.
    Perry, R. J., Peng, L., Barry, N. A., Cline, G. W., Zhang, D., Cardone, R. L., . . . Shulman, G. I. (2016). Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature, 534(7606), 213-217.
    Peterson, L. W., & Artis, D. (2014). Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nature Reviews Immunology, 14(3), 141-153.
    Pierre, K., & Pellerin, L. (2005). Monocarboxylate transporters in the central nervous system: distribution, regulation and function. Journal of Neurochemistry, 94(1), 1-14.
    Priyadarshini, M., Kotlo, K. U., Dudeja, P. K., & Layden, B. T. (2011). Role of short chain fatty acid receptors in intestinal physiology and pathophysiology. Comprehensive Physiology, 8(3), 1091-1115.
    Priyadarshini, M., Kotlo, K. U., Dudeja, P. K., & Layden, B. T. (2018). Role of Short Chain Fatty Acid Receptors in Intestinal Physiology and Pathophysiology. Compr Physiol, 8(3), 1091-1115.
    Prut, L., & Belzung, C. (2003). The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European Journal of Pharmacology, 463(1-3), 3-33.
    Ramos, A., Berton, O., Mormède, P., & Chaouloff, F. (1997). A multiple-test study of anxiety-related behaviours in six inbred rat strains. Behav Brain Res, 85(1), 57-69.
    Ramos, A., Mellerin, Y., Mormède, P., & Chaouloff, F. (1998). A genetic and multifactorial analysis of anxiety-related behaviours in Lewis and SHR intercrosses. Behav Brain Res, 96(1-2), 195-205.
    Rechkemmer, G., Rönnau, K., & von Engelhardt, W. (1988). Fermentation of polysaccharides and absorption of short chain fatty acids in the mammalian hindgut. Comp Biochem Physiol A Comp Physiol, 90(4), 563-568.
    Reigstad, C. S., Salmonson, C. E., Iii, J. F. R., Szurszewski, J. H., Linden, D. R., Sonnenburg, J. L., . . . Kashyap, P. C. (2015). Gut microbes promote colonic serotonin production through an effect of short‐chain fatty acids on enterochromaffin cells. The FASEB Journal, 29(4), 1395-1403.
    Ren, Y., Su, S., Liu, X., Zhang, Y., Zhao, Y., & Xiao, E. (2020). Microbiota-Derived Short-Chain Fatty Acids Promote BMP Signaling by Inhibiting Histone Deacetylation and Contribute to Dentinogenic Differentiation in Murine Incisor Regeneration. Stem Cells Dev, 29(18), 1201-1214.
    Resende, W. R., Valvassori, S. S., Réus, G. Z., Varela, R. B., Arent, C. O., Ribeiro, K. F., . . . Quevedo, J. (2013). Effects of sodium butyrate in animal models of mania and depression: implications as a new mood stabilizer. Behav Pharmacol, 24(7), 569-579.
    Riazi, K., Galic, M. A., Kentner, A. C., Reid, A. Y., Sharkey, K. A., & Pittman, Q. J. (2015). Microglia-Dependent Alteration of Glutamatergic Synaptic Transmission and Plasticity in the Hippocampus during Peripheral Inflammation. Journal of Neuroscience, 35(12), 4942-4952.
    Rose, C., Parker, A., Jefferson, B., & Cartmell, E. (2015). The Characterization of Feces and Urine: A Review of the Literature to Inform Advanced Treatment Technology. Critical Reviews in Environmental Science and Technology, 45(17), 1827-1879.
    Rune, I., Hansen, C. H. F., Ellekilde, M., Nielsen, D. S., Skovgaard, K., Rolin, B. C., . . . Hansen, A. K. (2013). Ampicillin-Improved Glucose Tolerance in Diet-Induced Obese C57BL/6NTac Mice Is Age Dependent. Journal of Diabetes Research, 2013, 1-13.
    Ruppin, H., Bar-Meir, S., Soergel, K. H., Wood, C. M., & Schmitt, M. G., Jr. (1980). Absorption of short-chain fatty acids by the colon. Gastroenterology, 78(6), 1500-1507.
    Sakamoto, K., & Konings, W. N. (2003). Beer spoilage bacteria and hop resistance. International journal of food microbiology, 89(2-3), 105-124.
    Savage, D. C., & Dubos, R. (1968). ALTERATIONS IN THE MOUSE CECUM AND ITS FLORA PRODUCED BY ANTIBACTERIAL DRUGS. The Journal of Experimental Medicine, 128(1), 97-110.
    Savage, D. C., Siegel, J. E., Snellen, J. E., & Whitt, D. D. (1981). Transit time of epithelial cells in the small intestines of germfree mice and ex-germfree mice associated with indigenous microorganisms. Applied and environmental microbiology, 42(6), 996-1001.
    Sepponen, K., Ruusunen, M., Pakkanen, J. A., & Pösö, A. R. (2007). Expression of CD147 and monocarboxylate transporters MCT1, MCT2 and MCT4 in porcine small intestine and colon. Vet J, 174(1), 122-128.
    Shanahan, F. (2002). The host-microbe interface within the gut. Best Pract Res Clin Gastroenterol, 16(6), 915-931.
    Sharon, G., Cruz, N. J., Kang, D.-W., Gandal, M. J., Wang, B., Kim, Y.-M., . . . Mazmanian, S. K. (2019). Human Gut Microbiota from Autism Spectrum Disorder Promote Behavioral Symptoms in Mice. Cell, 177(6), 1600-1618.e1617.
    Shih, H.-T., & Mok, H.-K. (2000). ETHOM: event-recording computer software for the study of animal behavior. . Acta Zoologica Taiwanica, 11(11): 47-61. .
    Shoji, H., Takao, K., Hattori, S., & Miyakawa, T. (2016). Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age. Molecular Brain, 9(1).
    Silva, B. A., Gross, C. T., & Gräff, J. (2016). The neural circuits of innate fear: detection, integration, action, and memorization. Learning & Memory, 23(10), 544-555.
    Sinturel, F., Gerber, A., Mauvoisin, D., Wang, J., Gatfield, D., Stubblefield, J. J., . . . Schibler, U. (2017). Diurnal Oscillations in Liver Mass and Cell Size Accompany Ribosome Assembly Cycles. Cell, 169(4), 651-663.e614.
    Skonieczna-Żydecka, K., Grochans, E., Maciejewska, D., Szkup, M., Schneider-Matyka, D., Jurczak, A., . . . Stachowska, E. (2018). Faecal Short Chain Fatty Acids Profile is Changed in Polish Depressive Women. Nutrients, 10(12), 1939.
    Soliman, M. L., & Rosenberger, T. A. (2011). Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression. Mol Cell Biochem, 352(1-2), 173-180.
    Spampanato, J., Polepalli, J., & Sah, P. (2011). Interneurons in the basolateral amygdala. Neuropharmacology, 60(5), 765-773.
    Stoddart, L. A., Smith, N. J., Jenkins, L., Brown, A. J., & Milligan, G. (2008). Conserved Polar Residues in Transmembrane Domains V, VI, and VII of Free Fatty Acid Receptor 2 and Free Fatty Acid Receptor 3 Are Required for the Binding and Function of Short Chain Fatty Acids. Journal of Biological Chemistry, 283(47), 32913-32924.
    Strati, F., Cavalieri, D., Albanese, D., De Felice, C., Donati, C., Hayek, J., . . . De Filippo, C. (2017). New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome, 5(1).
    Sudakov, S. K., Nazarova, G. A., Alekseeva, E. V., & Bashkatova, V. G. (2013). Estimation of the level of anxiety in rats: differences in results of open-field test, elevated plus-maze test, and Vogel's conflict test. Bull Exp Biol Med, 155(3), 295-297.
    Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X. N., . . . Koga, Y. (2004). Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol, 558(Pt 1), 263-275.
    Sun, J., Wang, F., Hong, G., Pang, M., Xu, H., Li, H., . . . Liu, J. (2016). Antidepressant-like effects of sodium butyrate and its possible mechanisms of action in mice exposed to chronic unpredictable mild stress. Neuroscience Letters, 618, 159-166.
    Szczesniak, O., Hestad, K. A., Hanssen, J. F., & Rudi, K. (2016). Isovaleric acid in stool correlates with human depression. Nutr Neurosci, 19(7), 279-283.
    Tang, W. W., Li, D. Y., & Hazen, S. L. (2019). Dietary metabolism, the gut microbiome, and heart failure. Nature Reviews Cardiology, 16(3), 137-154.
    Thangaraju, M., Cresci, G. A., Liu, K., Ananth, S., Gnanaprakasam, J. P., Browning, D. D., . . . Ganapathy, V. (2009). GPR109A Is a G-protein-Coupled Receptor for the Bacterial Fermentation Product Butyrate and Functions as a Tumor Suppressor in Colon. Cancer Research, 69(7), 2826-2832.
    Tochitani, S., Ikeno, T., Ito, T., Sakurai, A., Yamauchi, T., & Matsuzaki, H. (2016). Administration of Non-Absorbable Antibiotics to Pregnant Mice to Perturb the Maternal Gut Microbiota Is Associated with Alterations in Offspring Behavior. PLoS ONE, 11(1), e0138293.
    Tovote, P., Fadok, J. P., & Lüthi, A. (2015). Neuronal circuits for fear and anxiety. Nature Reviews Neuroscience, 16(6), 317-331.
    Underhill, D. M., & Iliev, I. D. (2014). The mycobiota: interactions between commensal fungi and the host immune system. Nature Reviews Immunology, 14(6), 405-416.
    van de Wouw, M., Boehme, M., Lyte, J. M., Wiley, N., Strain, C., O'Sullivan, O., . . . Cryan, J. F. (2018). Short‐chain fatty acids: microbial metabolites that alleviate stress‐induced brain–gut axis alterations. The Journal of physiology, 596(20), 4923-4944.
    Varela, R. B., Valvassori, S. S., Lopes-Borges, J., Mariot, E., Dal-Pont, G. C., Amboni, R. T., . . . Quevedo, J. (2015). Sodium butyrate and mood stabilizers block ouabain-induced hyperlocomotion and increase BDNF, NGF and GDNF levels in brain of Wistar rats. J Psychiatr Res, 61, 114-121.
    Vojinovic, D., Radjabzadeh, D., Kurilshikov, A., Amin, N., Wijmenga, C., Franke, L., . . . Van Duijn, C. M. (2019). Relationship between gut microbiota and circulating metabolites in population-based cohorts. Nature Communications, 10(1).
    Walf, A. A., & Frye, C. A. (2007). The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nature Protocols, 2(2), 322-328.
    Wang, L., Christophersen, C. T., Sorich, M. J., Gerber, J. P., Angley, M. T., & Conlon, M. A. (2012). Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig Dis Sci, 57(8), 2096-2102.
    Wostmann, B. S., Pleasants, J. R., Bealmear, P., & Kincade, P. W. (1970). Serum proteins and lymphoid tissues in germ-free mice fed a chemically defined, water soluble, low molecular weight diet. Immunology, 19(3), 443-448.
    Wu, H.-J., & Wu, E. (2012). The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes, 3(1), 4-14.
    Yamamoto, Y., Nakanishi, Y., Murakami, S., Aw, W., Tsukimi, T., Nozu, R., . . . Fukuda, S. (2018). A Metabolomic-Based Evaluation of the Role of Commensal Microbiota throughout the Gastrointestinal Tract in Mice. Microorganisms, 6(4), 101.
    Yan, J., Herzog, J. W., Tsang, K., Brennan, C. A., Bower, M. A., Garrett, W. S., . . . Charles, J. F. (2016). Gut microbiota induce IGF-1 and promote bone formation and growth. Proceedings of the National Academy of Sciences, 113(47), E7554-E7563.
    Zhang, S., Wang, H., & Zhu, M.-J. (2019). A sensitive GC/MS detection method for analyzing microbial metabolites short chain fatty acids in fecal and serum samples. Talanta, 196, 249-254.
    Zheng, D., Liwinski, T., & Elinav, E. (2020). Interaction between microbiota and immunity in health and disease. Cell Research, 30(6), 492-506.
    Zou, J., Chassaing, B., Singh, V., Pellizzon, M., Ricci, M., Fythe, M. D., . . . Gewirtz, A. T. (2018). Fiber-Mediated Nourishment of Gut Microbiota Protects against Diet-Induced Obesity by Restoring IL-22-Mediated Colonic Health. Cell Host & Microbe, 23(1), 41-53.e44.
    Zuurbier, K. W. M., Fung, S.-Y., Scheffer, J. J. C., & Verpoorte, R. (1995). Formation of aromatic intermediates in the biosynthesis of bitter acids in Humulus lupulus. Phytochemistry, 38(1), 77-82.

    下載圖示
    2026-01-22公開
    QR CODE