| 研究生: |
余欣盈 Yu, Hsin-Yind |
|---|---|
| 論文名稱: |
以藻油製備包覆葉黃素之液胞的可行性 Feasibility of Using Microalgal Lipids for Fabricating Lutein-Encapsulating Vesicles |
| 指導教授: |
張鑑祥
Chang, Chien-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 破囊壺菌 、藻油 、葉黃素 、液胞 |
| 外文關鍵詞: | Thraustochytrium, microalgal lipid, lutein, vesicle |
| 相關次數: | 點閱:120 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究嘗試以本土破囊壺菌DJ3萃取而得之藻油做為製備藥物載體的材料,期望達到藻油高值化的目標。研究內容著重於製程的開發,以及載體的物化性質、物理穩定性、藥物包覆效率等的探討,並利用小角度X光散射及穿透式電子顯微鏡分析載體的結構。結果顯示透過強制型製程所得到的藻油聚集體呈球狀,由TEM影像可斷定其為液胞結構。以總濃度為10 mM的藻油所製備的液胞初始平均粒徑約為169 nm,界面電位為負值,並有很優異的物理穩定性。而以藻油液胞做為葉黃素的載體,可達到約43%的包覆效率。葉黃素的存在雖使得藻油液胞雙層膜結構的流動性微幅下降,但對其物理穩定性無顯著的影響,可見以藻油液胞做為葉黃素的載體具可行性。
A microalgal lipid mixture rich in DHA was extracted from an isolated Thraustochytrium sp. DJ3 strain. This study aims to apply the microalgal lipid as delivery carrier of microalgae-extracted lutein in order to find a high value utilization of the microalgal lipid. In this study, the microalgal lipid was used to fabricate bilayered vesicles with negative charges by a forced formation approach. Furthermore, the vesicles were used as carriers for encapsulating microalgae-extracted lutein. Physical properties of the vesicles, such as initial size and zeta potential, are measured. Fluidity of the vesicular membranes with and without lutein was then investigated by infrared spectroscopy. The results showed that stable vesicles with negative charges could be successfully formed from the microalgal lipid with or without lutein. Microalgal lipid vesicles remained stable after being diluted to 5 mM and 2.5 mM. The existence of lutein had no effect on the initial size and zeta potential of the vesicles but slightly decreased the membrane fluidity of the vesicles. The existence of lutein had no adverse effect on the stability of the microalgal lipid vesicles, which showed the potential of using microalgal lipid for fabricating lutein-encapsulating vesicles. It was found that the encapsulation efficiency of lutein was about 41 %.
Bajpal, P. K., Bajpal P. and Ward, O. P., “Optimization of production of Docosahexaenoic Acid (DHA) by Thraustochytrium aureum ATCC 34304,” Journal of the American Oil Chemists’ Society, 68, 509-514, 1991.
Bhardwaj, U. and Burgess, D. J., “Physicochemical properties of extruded and non-extruded liposomes containing the hydrophobic drug dexamethasone,” International Journal of Pharmaceutics, 388, 181-189, 2010.
Blandamer, M. J., Briggs, B., Cullis, P. M., Rawlings, B. J. and Engberts, J., “Vesicle-cholesterol interactions: Effects of added cholesterol on gel-to-liquid crystal transitions in a phospholipid membrane and five dialkyl-based vesicles as monitored using DSC,” Physical Chemistry Chemical Physics, 5, 5309-5312, 2003.
Bowman, J. P., McCammon, S. A., Nichols, P. S., Skerratt, J. H., Rea, S. M., Nichols, P. D. and McMeekin, T. A., “Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5 omega 3) and grow anaerobically by dissimilatory Fe (III) reduction,” International Journal of Systematic Bacteriology, 47, 1040-1047, 1997.
Bruce, D. W., O’Hare, D. and Walton, R, “Structure from diffraction methods,” John Wiley & Sons, 131-132, 2014.
Burja, A. M., Armenta, R. E., Adianingtyas, H. R. and Barrow, C. J., “Evaluation of fatty acid extraction methods for Thraustochytrium sp. ONC-T18,” J. Agric. Food Chem., 55, 4795-4801, 2007.
Calvo, B., Collado, I. and Cepeda, E. A., “ Solubilities of palmitic acid in pure solvents and its mixtures,” Journal of Chemical & Engineering Data, 54, 64-68, 2009.
Chen, C.-Y., Jesisca, Hsieh, C., Lee, D.-J., Chang, C.-H.and Chang, J.-S., “ Production, extraction and stabilization of lutein from microalga Chlorella sorokiniana MB-1,” Bioresource Technology, 200, 500-505, 2016.
Cistola, D. P., Hamilton, J. A., Jackson, D, Small, D. M., “Ionization and phase behavior of fatty acids in water: application of the Gibbs phase rule,” Biochemistry, 27, 1881-1888, 1988.
Craft, N. E. and Soares, Jr., J. H., “Relative solubility, stability, and absorptivity of lutein and -carotene in organic solvents,” Journal of Agricultural and Food Chemistry, 40, 431-434, 1992.
Crosasso, P., Ceruti, M., Brusa, P., Arpicco, S., Dosio, F. and Cattel, L., “Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes,” Journal of Controlled Release, 63, 19-30, 2000.
Douliez, J. P., Houssou, B. H., Fameau, A. L. and Navailles, L., “Self-Assembly of bilayer vesicles made of saturated long chain fatty acid," Langmuir, 32, 401−410, 2016.
Eastman, S. J., Siegel, C., Tousignant, J., Smith, A. E., Cheng, S. H. and Scheule, R. K., “Biophysical characterization of cationic lipid: DNA complexes,” Biochimica et Biophysica Acta-Biomembranes, 1325, 41-62, 1997.
Fan, K., Chen, F., Jones, E. and Vrijmoed, L., “Eicosapentaenoic and docosahexaenoic acids production by and okara-utilizing potential of thraustochytrids,” Journal of Industrial Microbiology & Biotechnology, 27, 199-202, 2001.
Feitosa, E., Jansson, J. and Lindman, B., “The effect of chain length on the melting temperature and size of dialkyldimethylammonium bromide vesicles,” Chemistry and Physics of Lipids, 142, 128-132, 2006.
Gebicki, J. M. and Hicks, M., “Ufasomes are stable particles surrounded by unsaturated fatty acid membranes,” Nature, 243, 232-234, 1973.
Guo, X. and Ota, Y., “Incorporation of eicosapentaenoic and docosahexaenoic acids by a yeast (FO726A),” Journal of Applied Microbiology, 89, 107-115, 2000.
Heimburg, T., “A model for the lipid pretransition: Coupling of ripple formation with the chain-melting transition,” Biophysical Journal, 78, 1154-1165, 2000.
Hincha, D. K., “Effects of alpha-tocopherol (vitamin E) on the stability and lipid dynamics of model membranes mimicking the lipid composition of plant chloroplast membranes,” Febs Letters, 582, 3687-3692, 2008.
Hong, W. K. Rairakhwada, D., Seo, P. S., Park, S. Y., Hur, B. K., Kim, C. H. and Seo, J. W., “Production of lipids containing high levels of docosahexaenoic acid by a newly isolated microalga, Aurantiochytrium sp. KRS101,” Applied Biochemistry and Biotechnology, 164, 1468-1480, 2011.
Hong, S. S., Kim, S. H. and Lim, S. J., “Effects of triglycerides on the hydrophobic drug loading capacity of saturated phosphatidylcholine-based liposomes,” International Journal of Pharmaceutics, 483, 142-150, 2015.
Immordino, M. L., Brusa, P., Arpicco, S., Stella, B., Dosio, F. and Cattel, L., “Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing docetaxel,” Journal of Controlled Release, 91, 417-429, 2003.
Israelachvili, J. N., Mitchell, D. J. and Ninham, B. W., “Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers,” Journal of the Chemical Society-Faraday Transactions II, 72, 1525-1568, 1976.
Jayme, M. L., Dunstan, D. E. and Gee, M. L., “Zeta potentials of gum arabic stabilised oil in water emulsions,” Food Hydrocolloids, 13, 459-465, 1999.
Kaler, E. W., Murthy, A. K., Rodriguez, B. E. and Zasadzinski, J. A. N., “Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants,” Science, 245, 1371-1374, 1989.
Keough, K. M. W. and Davis, P. J., “Gel to liquid-crystalline phase-transitions in water dispersions of saturated mixed-acid phosphatidylcholines,” Biochemistry, 18, 1453-1459, 1979.
Kranenburg, M. and Smit, B., “Phase behavior of model lipid bilayers,” Journal of Physical Chemistry B, 109, 6553-6563, 2005.
Kumon, Y., Yokoyama, R., Haque, Z., Yokochi, T., Honda, D. and Nakahara, T., “A New Labyrinthulid Isolate That Produces Only Docosahexaenoic Acid, “ Marine Biotechnology, 8, 170-177, 2006.
Lee, W.-H., Tang, Y.-L., Chiu, T.-C. and Yang, Y.-M., “Synthesis of ion-pair amphiphiles and calorimetric study on the gel to liquid-crystalline phase transition behavior of their bilayers,” Journal of Chemical and Engineering Data, 60, 1119-1125, 2015.
Liu, C. H., Chiu, H. C., Wu, W. C., Sahoo, S. L. and Hsu, C. Y., “Novel Lutein Loaded Lipid Nanoparticles on Porcine Corneal Distribution,” Journal of Ophthalmology, 2014, 1-11, 2014.
Lopes, S., Neves, C., Eaton, P. and Gameiro, P., “Cardiolipin, a key component to mimic the E. coli bacterial membrane in model system membranes,” Biophysical Journal, 100, 626-626, 2011.
Marsh, D., “CRC handbook of lipid bilayers,” 1990.
Massey, J. B., “Interfacial properties of phosphatidylcholine bilayers containing vitamin E derivatives,” Chemistry and Physics of Lipids, 109, 157-174, 2001.
Matos, A. P., “Essential fatty acid from microalgae,” Inform, 27, 22-26, 2016.
Matsumoto, T., “Internal and interfacial structure of small vesicle in aqueous colloid of didodecyldimethylammonium bromide,” Colloid and Polymer Science, 270, 492-497, 1992.
Maulik, P.R., Atkinson, D. and Shipley, G.G. “X-ray scattering of vesicles of N-acyl sphingomyelins determination of bilayer thickness,” Biophysical Journal, 50, 1071-1077, 1986.
Merino-Montero, S., Montero, M. T. and Hernandez-Borrell, J., “Effects of lactose permease of Escherichia coli on the anisotropy and electrostatic surface potential of liposomes,” Biophysical Chemistry, 119, 101-105, 2006.
Michel, N., Fabiano, A. S., Polidori, A., Jack, R. and Pucci, B., “Determination of phase transition temperatures of lipids by light scattering,” Chemistry and Physics of Lipids, 139, 11-19, 2006.
Morigaki, K. and Peter, Walde, P., “Fatty acid vesicles,” Current Opinion in Colloid & Interface Science, 12, 75-80, 2007.
Namania, T., Ishikawa, T., Morigaki, K. and Walde, P., “Vesicles from docosahexaenoic acid,” Colloids and Surfaces B: Biointerfaces, 54, 118-123, 2007.
New, R. R. C., “Liposomes: a practical approach,” Oxford University Press, New York, 1-32, 1990.
Mullins, O. C., Sheu, E. Y., Hammami, A. and Marshall, A. G., “Asphaltenes, heavy oils, and petroleomics,” Springer-Verlag New York, 380-381, 2007.
Pleissner, D. and Eriksen, N. T., “Effects of phosphorous, nitrogen, and carbon limitation on biomass composition in batch and continuous flow cultures of the heterotrophic dinoflagellate Crypthecodinium cohnii,” Biotechnology and Bioengineering, 109, 2005-2016, 2012.
Quilodràn, B. Hinzpeter, I. Quiroz, A. and Shene, C., “Evaluation of liquid residues from beer and potato processing for the production of docosahexaenoic acid (C22:6n-3, DHA) by native thraustochytrid strains,” World Journal of Microbiology and Biotechnology, 25, 2121-2128, 2009.
Quilodràn, B., Hinzpeter, I., Hormazabal, E., Quiroz, A. and Shene, C., “Docosahexaenoic acid (C22:6n−3, DHA) and astaxanthin production by Thraustochytriidae sp. AS4-A1 a native strain with high similitude to Ulkenia sp.: Evaluation of liquid residues from food industry as nutrient sources,” Enzyme and Microbial Technology, 47, 24-30, 2010.
Ruozi, B., Belletti, D., Tombesi, A., Tosi, G., Bondioli, L., Forni, F. and Vandelli, M. A., “AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study,” International Journal of Nanomedicine, 6, 557-563, 2011.
Segota, S. and Tezak, D., “Spontaneous formation of vesicles,” Advances in Colloid and Interface Science, 121, 51-75, 2006.
Tan, C., Xia, S., Xue, J., Xie, J., Feng, B. and Zhang, X., “Liposomes as vehicles for lutein: preparation, stability, liposomal membrane dynamics, and structure,” Journal of Agricultural and Food Chemistry, 61, 8175-8184, 2013.
Unagul, P., Assantachai, C., Phadungruengluij, S., Suphantharika, M., Tanticharoen, M. and Verduyn, C., “Coconut water as a medium additive for the production ofdocosahexaenoic acid (C22:6 n3) by Schizochytrium mangrovei Sk-02,” Bioresource Technology, 98, 281-287, 2007.
Vist, M. R. and Davis, J. H., “Phase-equilibria of cholesterol dipalmitoylphosphatidylcholine mixtures - deuterium nuclear magnetic-resonance and differential scanning calorimetry,” Biochemistry, 29, 451-464, 1990.
Wong, M. M., Tsui, C. M., Au, D. T. and Vrijmoed, L. P., “Docosahexaenoic acid production and ultrastructure of the thraustochytrid Aurantiochytrium mangrovei MP2 under high glucose concentrations.” Mycoscience, 49, 266-270, 2008.
Wu, C. J., Kuo, A.T., Lee, C.H., Yang, Y.M., Chang, C.H., “Fabrication of positively charged catanionic vesicles from ion pair amphiphile with double-chained cationic surfactant,” Colloid and Polymer Science, 292, 589-597, 2014.
Yaguchi, T., Tanaka S., Yokochi, T., Nakahara, T. and Higashihara T., “Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21,’’ Journal of the American oil Chemists’ Society, 74, 1431-1434, 1997.
洪振益, “溫度效應對帶電陰陽離子液胞釋放行為的影響,” 國立成功大學化學工程學系碩士論文, 2009.
黃曉貞, “以醱酵策略提升本土破囊壺菌DJ3之DHA生產效能,” 國立成功大學化學工程學系碩士論文, 2015.
鄭有舜, “X-光小角度散射在軟物質研究上的應用,” 物理雙月刊, 26, 416-424, 2004.
廖怡芬, “長碳鏈醇類添加劑對帶電陰陽離子液胞物理穩定性的影響,” 國立成功大學化學工程學系碩士論文, 2006.
鍾依玲, “陰/陽離子液胞自發性形成之探討,” 國立成功大學化學工程學系碩士論文, 2002.