簡易檢索 / 詳目顯示

研究生: 吳英信
Wu, Ying-Hsin
論文名稱: 微晶片聚合酶連鎖反應器效率之評估與最佳化分析
Efficiency Assessing and Optimal Analyzing of Micro PCR Chip
指導教授: 陳榮盛
Chen, Rong-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 126
中文關鍵詞: 微晶片聚合酶連鎖反應器最佳化
外文關鍵詞: Micro PCR Chip, Optimization
相關次數: 點閱:73下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文係針對微晶片聚合酶連鎖反應器(PCR Chip),利用ANSYS模擬軟體進行分析,以探討晶片中樣本的溫度分佈情形,首先評估最佳熱電阻尺寸配置方式,並分析各元件的材料對於樣本均溫效率的影響,最後,利用最佳化方法,在合理之設計變數變化範圍內,找出具有最佳均溫效率之樣本尺寸設計。
    研究結果顯示,維持熱電阻斷面積與電阻值固定的前提下,即適當調整熱電阻厚度並以長度之變化補足電阻差值,將可獲得較佳的均溫效果,此外,當熱電阻的表面積越大時,具有較佳的均溫性,其次,在各元件的材料組合方面,上蓋板與基材使用PMMA使得熱量不易散失,故形式四之組合一的均溫效率為84.1%。再者,在限定條件下,進行樣本的尺寸最佳化分析,可得最佳的樣本尺寸,長度為3054μm,寬度為2502μm,其高度為119μm,該組合之樣本均溫效率為96%。

    This thesis focuses on polymerse chain reaction chip (PCR chip).By using finite element software, ANSYS ,evaluating temperature distribution in the sample of the chip. First, evaluate the best dimension arrangement of heat resistance; and then analyze the uniform temperature efficiency of the material of component . Finally
    ,use the method of optimal design to find out the best uniform temperature efficiency design under the reasonable ranges of design variables.
    The research results demonstrate that the best heat resistor dimension arrangement concerning uniform temperature efficiency could be achieved on the premise of sustaining the cross-section area of heat resistor and resistance value ,which mean to adjust the thickness of heat resistor and compensate the difference of resistance value properly by moderating the length of heat resistor .Besides ,when the surface area is large ,the uniform temperature efficiency is better ,In addition ,in terms of material combination , using PMMA as material of cover plate and substrate can prevent thermal energy to be lost , hence the uniform temperature efficiency of set 1 of type could achieve 84.1% ,Furthermore , the best dimension of sample could be obtained by processing the optimal analysis of sample under the limited condition ,length is 3054μm ,width is 2502μm , height is 119μm ,the uniform temperature efficiency is 96% .

    目 錄 中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅷ 圖目錄 Ⅹ 符號說明 ⅩV 第一章 緒論 1 1-1前言 1 1-2 研究動機與目的 1 1-3文獻回顧 2 1-4研究方法 3 1-5章節提要 4 第二章 理論基礎 6 2-1 研究主題 6 2-2生物晶片簡介 6 2-3 聚合酶連鎖反應之原理 8 2-4微晶片聚合酶連鎖反應器之製程 9 2-5微晶片聚合酶連鎖反應器之種類與特色 9 2-6分析模型中各元件簡介 11 2-7電熱理論 12 2-7-1電-熱轉換 12 2-7-2電阻計算 14 2-7-3 熱傳導理論 14 2-7-4 熱對流理論 15 2-7-5 熱能平衡理論 15 2-8最佳化分析理論 16 2-8-1最佳化原理 17 2-8-2次維近似法 20 2-8-3收斂要求 23 第三章 模型建立與評估 29 3-1模型建立 29 3-1-1 微晶片聚合酶連鎖反應器之結構 29 3-1-2基本假設條件 30 3-1-3邊界條件與負載 30 3-2 ANSYS有限元素分析軟體 31 3-3分析過程 33 3-3-1樣本均溫性判斷 34 3-3-2輸入電壓大小的取決 34 3-3-3模擬分析驗證 35 3-3-4原始模型分析結果 36 第四章 熱電阻尺寸最佳化 51 4-1熱電阻分析 51 4-1-1電阻值之計算 51 4-1-2不同型式的設定 52 4-2分析結果之比較與評估 53 第五章 各元件材料變化之評估 78 5-1不同材料形式的設定 78 5-2分析結果之比較與評估 78 5-2-1上蓋板材料對均溫效率的影響 79 5-2-2基材材料對均溫效率的影響 79 5-2-3絕緣層材料對均溫效率的影響 80 5-2-4熱電阻材料對均溫效率的影響 80 5-2-5分析結果討論 81 5-3絕緣層厚度對均溫效率之影響 83 第六章 樣本尺寸最佳化分析 107 6-1最佳化分析 108 6-1-1設計變數的設定 108 6-1-2狀態變數的設定 111 6-1-3目標函數的設定 111 6-2分析結果之評估與比較 112 第七章 結論 122 7-1結論 122 7-2未來研究方向 124 參考文獻 125

    1.Northrup,M.A.,Gonzalez,C.,Hadley,D.,Hills,R,F.,Landre,P.,Lehew,S.,Saiki,R.,Sninsky,J.and Watson,R., “A MEMS-based miniature DNA analysis system”,The 8th International Conference on Solid –State Sensors and Actuators,and Eurosensors IX.Stockholm,Sweden,pp.25-29,June 1995.
    2.Kopp,M.U.,Luechinger,M.B.,and Manz,A., “Continuous flow PCR on a chip,”Proceedings of the μ-TAS ’98 Workshop,pp.1046-1048,1998.
    3.Oda ,R.P.,Strausbauch,M.A.,Huhmer,A.F.R.,Jurrens,S.R.,Craighead,J.,Wettstein,P.J.,Eckolff,B.,Kline,B.and Landers,J.P., “Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplication of DNA”,Anal.Chem.,pp.4361-4368,1998.
    4.Kondo,S.,Kano,K.,and Shinohara,E., “Reaction chamber for PCR made by microfabrication technologies”,Transducers ’99,the 10th International Conference on Sensors and Actuators Solid-State.
    5.Y.C. Lin,C.C.Yang,M.Y.Hung, “Simulation and Experimental Verification of Micro Polymerase Chain Reaction Chips”Sens. Actuators B,Vol.71,pp.127-133,2000.
    6.K. B. Lee, C. Y. Lee,H. H. Liu,F. C. Huang,“MEMS-based Temperature Control Systems for PCR Application,” Special issue, The International Journal of Non-linear Sciences and Numerical Simulations, 3 (3-4): 177-180, 2002. (SCI-E)
    7.ANSYS Menu, “Thermal-Electric Element,” Ch11. Table of Contents Theory Reference 5.7, March 2001.
    8.H. Guckel, J. Klein, T. Christenson, K. Skrobis, M. Laudon, E. G. Lovell, ”Thermo-magnetic Metal Flexure Actuators,” Proc., Solid-State Sensor and Actuator Workshop (Hilton Head ’92), pp. 73-75, June 1992.
    9.Frank P. Incropera, David P. DeWitt “Fundamentals of Heat and Mass Transfer,” Forth Edition, John Wiley & Sons, Inc. 1996.
    10.Frank P. Incropera, David P. DeWitt “Fundamentals of Heat and Mass Transfer,” Forth Edition, John Wiley & Sons, Inc. 1996.
    11.Frank P. Incropera, David P. DeWitt “Fundamentals of Heat and Mass Transfer,” Forth Edition, John Wiley & Sons, Inc. 1996.
    12.Peter Kohnme Ph. D., “Design Optimization,” ANSYS, Inc Theory Release 5.7, Ch. 20, pp. 1167-1188, March 2001.

    下載圖示 校內:2004-08-12公開
    校外:2004-08-12公開
    QR CODE