| 研究生: |
陳柏勳 Chen, Po-Hsun |
|---|---|
| 論文名稱: |
具相位超前之無刷直流馬達無感測器驅動系統 A Sensorless Drive System for Brushless DC Motors with Phase Advance Control |
| 指導教授: |
謝旻甫
Hsieh, Min-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 無感測器驅動 、相位超前 、弱磁控制 、無刷直流馬達 |
| 外文關鍵詞: | Field weakening, Phase advance, BLDCM, Sensorless drive |
| 相關次數: | 點閱:66 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無刷直流馬達(Brushless DC Motor)具備高功率密度、高效率、維修容易等諸多優點,目前已廣泛運用於各式場合。為使無刷直流馬達有正確的電子換相,需使用位置感測元件來提供轉子資訊,例如霍爾元件即是一個低成本、高可靠度的選擇。但是在某些應用場合,例如高溫、空間小等條件限制,造成無法使用或安裝位置感測器時,就必須使用無感測器驅動技術來達成,也因此發展低成本、高效率且易實現的無感測器驅動技術也一直是業界相當重視的議題。
本論文旨在發展無刷直流馬達無感測器驅動系統,以取代霍爾元件等位置感測器。利用馬達三相端電壓經過簡單的比較器電路後即可獲得換相訊號。為補償因濾波所造成的相位落後,本論文透過「數位相位補償」以實現馬達正確電子換相。此外,在無感測器驅動之架構下,亦藉由相位超前方式實現馬達弱磁控制,延伸馬達操作區域,使得馬達轉速得以提昇。全系統無需複雜的硬體電路及繁複的數學計算,僅利用一顆16位元單晶片即可實現,具有高效能、低成本的優點。最後藉由相關實驗,以驗證本系統之效能。
Brushless DC motors (BLDCM) have been applied to many applications due to their advantages such as high power density, high efficiency and less maintenance. In order to process electrical commutations correctly, sensors are required to detect rotor pole positions. For example, Hall Effect sensors are a common-use device with advantages of low cost and high reliability. However, Hall Effect sensors may not be suitable for some conditions such as high temperature or small volume. Hence, the development of sensorless drive techniques has been a very important issue for industry.
This thesis aims to implement a BLDCM sensorless drive system to replace position sensors such as Hall Effect elements. The feature of this thesis includes simple circuitry and digital phase compensation, which compensates the phase lag due to low pass filtering for correct commutation. Moreover, under the sensorless condition, the motor field weakening can be achieved by phase advance control to extend the operating range. The entire system has been accomplished by a 16-bit microcontroller without complex mathematical calculation. Hence, it has the advantages of high efficiency and low cost. Experiments are conducted to verify the system performance.
[1] Allegro Micro Systems, “Datasheet of Allegro 8904,” Allegro Micro Systems, 2003.
[2] Cambier, “Brushless DC Motor Using Phase Timing Advancement,” U.S. Patent Number 5,677,605, Oct., 1997.
[3] C. H. Chen and M. Y. Cheng, ”A New Sensorless Control Scheme for Brushless DC Motors without Phase Shift Circuit,” in Proceedings of the IEEE PEDS Conference, vol. 2, pp. 1084-1089, Nov. 2005.
[4] D. Hanselman, Brushless Permanent Magnet Motor Design, The Writers’ Collective, USA, 2003.
[5] Fairchild, “Datasheet of ML 4425,” Fairchild Semiconductor, 2001.
[6] J. C. Moreira, “Indirect Sensing for Rotor Flux Position of Permanent Magnet AC Motors Operating in a Wide Speed Range,” IEEE Transactions on Industry Applications, vol. 32, no. 6, pp. 1394-1401, Nov./Dec. 1996.
[7] J. Shao, D. Nolan, M. Teissier, and D. Swanson, “A Novel Microcontroller-Based Sensorless Brushless DC (BLDC) Motor Drive for Automotive Fuel Pumps,” IEEE Transactions on Industry Applications, vol. 39, no. 6, pp. 1734-1740, Nov./Dec. 2003.
[8] J. Shao, “An Improved Microcontroller-Based Sensorless Brushless DC (BLDC) Motor Drive for Automotive Applications,” in Proceedings of the IEEE IAS Conference, vol. 4, pp. 2512-2517, Oct. 2005.
[9] J. S. Lawler, J. M. Bailey, and J. W. McKeever, “Limitations of the Conventional Phase Advance Method for Constant Power Operation of the Brushless DC Motor,” in Proceedings of the IEEE Southeast Conference, pp.174-180, 2002.
[10] J. X. Shen, Z. Q. Zhu, and D. Howe, “Sensorless Flux-Weakening Control of Permanent Magnet Brushless Machines using Third-Harmonic Back-EMF,” IEEE Transactions on Industry Applications, vol. 40, no. 6, pp. 1629-1636, Nov./Dec. 2004.
[11] K. Iizuka, H. Uzuhashi, M. Kano and K. Mohri, “Microcomputer Control for Sensorless Brushless Motor,” IEEE Transactions on Industry Applications, vol. 21, no. 4, pp. 595-601, May/June. 1985.
[12] Microchip, “dsPIC30F Family Reference Manual,” DS70046B, Microchip Technology Inc., 2003.
[13] Microchip, “dsPIC30F4012 Data Sheet,” DS70135D, Microchip Technology Inc., 2004.
[14] Microchip, “MPLAB C30 C Compiler User’s Guide,” DS51284C, Microchip Technology Inc., 2004.
[15] Min-Fu Hsieh, Jeng-Horng Chen, Yu-Han Yeh, Chi-Lu Lee, Po-Hsun Chen, You-Chiuan Hsu, and Yen-Hung Chen, “Design and Realization of a Hubless Rim-driven Thruster,” to present in the 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON2007), Taipei, Taiwan, Nov. 5-8, 2007.
[16] P. Damodharan and K. Vasudevan, “Indirect Back-EMF Zero Crossing Detection for Sensorless BLDC Motor Operation,” in Proceedings of the IEEE PEDS Conference, vol. 2, pp. 1107-1111, Nov. 2005.
[17] P. Pillay, and R. Krishnan, “Modeling, Simulation, and Analysis of Permanent-Magnet Motor Drives—Part II:The brushless DC Motor Drive,” IEEE Transactions on Industry Applications, vol. 25. , no. 2, pp. 274-279, Mar./Apr. 1989.
[18] R. C. Becerra, T. M. Jahns, and M. Ehsani, “Four-Quadrant Sensorless Brushless ECM drive,” in Proceedings of the IEEE APE Conference, pp. 202-209, 1991.
[19] ST Microelectronics, “Datasheet of ST72141,” ST Microelectronics, 2002.
[20] S. Ogasawara and H. Akagi, “An Approach to Position Sensorless Drive for Brushless DC Motor,” IEEE Transactions on Industry Applications, vol. 27, no. 5, pp. 928-933, Sep./Oct. 1991.
[21] Z. Mihailovic, “Modeling and control design of VSI-Fed PMSM drive system with active load,” Blacksburg, Virginia, 1998.
[22] 陳秋麟、王順忠編譯,電機機械基本原理,東華書局股份有限公司,台北,1995。
[23] 孫清華編譯,最新無刷直流馬達,全華科技圖書股份有限公司,台北,2001。
[24] 鄭光耀,無刷直流馬達無感測控制方法之研究與DSP實現技術之發展,國立交通大學電機與控制工程學系博士論文,2003。
[25] 戴維志,空調壓縮機調速驅動系統之設計與實現,國立成功大學電機工程學系碩士論文,2006。
[26] 石富存,以數位訊號處理器為基礎之無刷直流馬達弱磁控制,國立中山大學電機工程學系碩士論文,1992。
[27] 巫昌圜,內藏式永磁同步馬達弱磁控制於電動載具速度提升之探討與實現,國立成功大學電機工程學系碩士論文,2003。
[28] 廖鴻儒,無刷直流馬達無感測器驅動技術於水下載具推進之設計實現,國立成功大學系統及船舶機電工程學系碩士論文,2006。
[29] 白中和譯,Power(大功率) MOSFET/IGBT 應用技術,建興文化事業有限公司,2003。