| 研究生: |
吳展任 Wu, Chan-Jen |
|---|---|
| 論文名稱: |
基於逆高斯過程加速衰變試驗最適實驗設計 Optimal allocation design for accelerated degradation test with inverse Gaussian process |
| 指導教授: |
李宜真
Lee, I-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 33 |
| 中文關鍵詞: | 逆高斯過程, 加速衰變試驗 、最適實驗設計 、V-optimality 、蒙地卡羅重抽樣方法 |
| 外文關鍵詞: | inverse Gaussian process, optimum design, accelerated degradation test, V-optimality, Monte-Carlo resampling method |
| 相關次數: | 點閱:106 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
加速衰變試驗分析廣泛地用以推論高可靠度產品的壽命資訊 (如產品壽命第 p 百分 位數、平均失效時間)。然而如何規劃一個加速衰變試驗並決定加速應力以及其樣本數,用以推論高可靠度產品壽命資訊是工程師常常遇到的決策問題。目前已經有許多文獻探討最適實驗設計的問題。本研究考慮具隨機效應與固定效應逆高斯過程探 討恆定應力加速衰變試驗之最適實驗配置,利用極小化產品正常使用狀況下壽命分位數之變異數為準則求得兩個應力實驗配置下之最適樣本數與最適應力水準之最適 實驗配置。我們修正文獻中固定效應逆高斯過程最適實驗設計結果。此外我們探討 使用近似分佈或確切分佈對退化衰變路徑壽命分佈之最適實驗配置影響。對於具隨機效應逆高斯過程,我們利用了蒙地卡羅重抽樣方法得到兩應力水準下之最適實驗配置。
Degradation data analysis is widely used to make inference of the lifetime information for high-reliability products (e.g., p−th quantile, mean time to failure). Hence, it is an important issue for engineers to set up an efficient optimum ADT plan. Many literatures discussed this issue of the optimum designs. This study concerns the optimum test plans of constant stress accelerated degradation test with V-optimality for the inverse Gaussian processes with random effects and fixed effects. In this study, we correct results of the optimum design in literature based on the inverse Gaussian process with fixed effect. Furthermore, we explores the effect of optimum designs by using approximate distribution and exact distribution for the lifetime distribution of degradation paths. For the inverse Gaussian process with random effect, we use the Monte-Carlo resampling method to yield an optimum test plans for a two-level ADT.
F. Duan and G. Wang. Optimal step-stress accelerated degradation test plans for inverse gaus- sian process based on proportional degradation rate model. Journal of Statistical Compu- tation and Simulation, 88(2):305–328, 2018a.
F. Duan and G. Wang. Optimal design for constant-stress accelerated degradation test based on gamma process. Communications in Statistics - Theory and Methods, 0(0):1–25, 2018b.
P. Gilbert and R. Varadhan. numDeriv: Accurate Numerical Derivatives, 2016. R package version 2016.8-1.
C.-H. Hu, M.-Y. Lee, and J. Tang. Optimum step-stress accelerated degradation test for wiener degradation process under constraints. European Journal of Operational Research, 241, 09 2014.
J. Lawless and M. Crowder. Covariates and random effects in a gamma process model with application to degradation and failure. Lifetime Data Analysis, 10(3):213–227, Sep 2004. ISSN 1572-9249.
C. J. Lu and W. Q. Meeker. Using degradation measures to estimate a time-to-failure distri- bution. Technometrics, 35(2):161–174, 1993. ISSN 00401706.
W. Meeker and L. Escobar. Statistical Methods for Reliability Data. Wiley, New York, 1998.
Z. Pan and N. Balakrishnan. Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes. Reliability Engineering & System Safety, 96(8):949 – 957, 2011. ISSN 0951-8320.
C. Peng and S. Tseng. Mis-specification analysis of linear degradation models. IEEE Trans- actions on Reliability, 58(3):444–455, Sep. 2009. ISSN 0018-9529.
C. Y. Peng. Inverse gaussian processes with random effects and explanatory variables for degradation data. Technometrics, 57(1):100–111, 2015.
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2018.
J. C. Spall. Monte carlo computation of the fisher information matrix in nonstandard settings. Journal of Computational and Graphical Statistics, 14(4):889–909, 2005.
Stan Development Team. RStan: the R interface to Stan, 2018. R package version 2.18.2. S. T. Tseng and I. C. Lee. Optimum allocation rule for accelerated degradation tests with a
class of exponential-dispersion degradation models. Technometrics, 58(2):244–254, 2016.
S.-T. Tseng, N. Balakrishnan, and C.-C. Tsai. Optimal stepstress accelerated degradation test plan for gamma degradation processes. IEEE Transactions on Reliability - TR, 58: 611–618, 12 2009.
S. T. Tseng, C. C. Tsai, and N. Balakrishnan. Optimal Sample Size Allocation for Accelerated Degradation Test Based on Wiener Process. Wiley, 08 2011. ISBN 9780471667193.
H. Wang, Y. Zhao, X. Ma, and H. Wang. Optimal design of constant-stress accelerated degra- dation tests using the m-optimality criterion. Reliability Engineering & System Safety, 164: 45 – 54, 2017. ISSN 0951-8320.
X. Wang and D. Xu. An inverse gaussian process model for degradation data. Technometrics, 52(2):188–197, 2010.
G. Yang. Life Cycle Reliability Engineering. Wiley, 2007.
Z.-S. Ye and N. Chen. The inverse gaussian process as a degradation model. Technometrics,
56(3):302–311, 2014.
Z.-S. Ye, L.-P. Chen, L. C. Tang, and M. Xie. Accelerated degradation test planning using
the inverse gaussian process. Reliability, IEEE Transactions on, 63:750–763, 09 2014.