簡易檢索 / 詳目顯示

研究生: 鄭育松
Cheng, Yu-Song
論文名稱: 利用脈衝電沉積製備不同幾何圖案之硒化銅銦主動層元件與應用
Fabrication and application with pulse electrodeposited technology for various geometric CuInSe2 active layer devices
指導教授: 洪茂峰
Houng, Mau-Phon
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 85
中文關鍵詞: 脈衝電沉積硒化銅銦太陽能電池碘鈍化奈米柱陣列量子效應
外文關鍵詞: pulse electrodeposition, CuInSe2 thin film solar cell, Iodine passivation, Nanowire arrays, quantum effect
相關次數: 點閱:97下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出不同幾何圖形之硒化銅銦(Copper Indium diselenide,CuInSe2)化合物半導體做為元件主動層,成功以脈衝電沉積技術與陽極氧化鋁模板(Anodic aluminum oxide,AAO)製備出不同幾何圖案之CuInSe2光電元件與應用,其本研究論文分為兩部份分別做作為討論;(i) 以脈衝電沉積技術在不同pH值環境沉積CuInSe2薄膜,藉以討論結晶品質、表面形貌,以及二次相生成。繼之,以化學水浴法(Chemical bath deposition,CBD)沉積硫化鎘摻雜硼(Cadmium sulfide doped boron,Cd1-xS:B)薄膜、並且做為窗口層,以調變不同硼劑量探討Cd1-xS:B薄膜之光電特性、摻雜機制、以及硼電負度(Electron negativity,EN)影響CdS能隙之變化。在電沉積環境之pH值為1.73與硼濃度為100 mM可分別得到最佳參數,將其設計成太陽能電池結構(Al/AZO/Cd1-xS:B/CuInSe2/Mo/Glass),並獲得初步效率2.37%(Voc: 293 mV, Jsc: 26.85 mA/cm2,and FF: 30.1%)。續之,調變不同碘濃度藉以鈍化CuInSe2表面,藉此將效率進一步提升至3.77% (Voc: 330 mV, Jsc: 28.60 mA/cm2,and FF: 39.9%),且表面複合速率由2.328x103cm/S降至1.947x103cm/S;(ii) 以及陽極氧化鋁模板(Anodic aluminum oxide,AAO)輔助成長CuInSe2奈米柱,施以一電場牽引電解液中金屬離子、並利用AAO模板奈米通道限制金屬離子移動方向,藉此探討CuInSe2奈米柱成核機制、結晶品質、填孔率、以及晶粒尺寸大小等。隨後以穿透式電子顯微鏡(Transmission Electron Microscopy,TEM)、選區繞射圖(Selected-area electron diffraction,SAED)以及紫外線/可見光分光光譜儀(Ultraviolet–visible spectroscopy,UV-Vis),分別檢測CuInSe2奈米柱結構、單-多晶相以及材料量子效應。爾後,分別以鉑(Platinum)、銀(Silver)金屬形成歐姆接觸與蕭特基二極體,藉此確認本研究論文所製備奈米柱為p-type半導體。混合不同界面活性劑(Dimethyl sulfoxide,DMSO)之有機導電膠體(PEDOT),以解決p-CuInSe2奈米柱表面荷葉效應(Lotus effect),藉此順利形成PEDOT/p-CuInSe2(Core-shell)結構。最後,以蕭特基二極體與PEDOT/p-CuInSe2兩種元件結構探討載子傳輸行為、載子復合速率、能帶結構、以及二次相復合路徑作為分析。

    In this dissertation, ternary compound semiconductor copper indium diselenide (CuInSe2) was designed as an active layer with different geometric structures. The CuInSe2 was also prepared as an optoelectronic device, and pulse electrodeposition technology and anodic aluminum oxide (AAO) template were applied. This proposal is divided into two parts as follows. (i) Fabrication of CuInSe2 thin films by pulse electrodeposition with various pH values was conducted to investigate crystal quality, surface morphology, and second-phase generation. Subsequently, a cadmium sulfide-doped boron (Cd1-xS:B) thin film was deposited as the emitter layer by chemical bath deposition. The effects on photoelectric characteristics, doping mechanism, and bandgap value of boron electron negativity were determined. The optimal parameter at pH value was 1.73 for CuInSe2 and the boron concentration was 100 mM for Cd1-xS:B. These parameters were considered in the design of the thin-film solar cell (Al/AZO/Cd1-xS:B/CuInSe2/Mo/glass). Initial conversion efficiency was 2.37% (Voc, 293 mV; Jsc, 26.85 mA/cm2; and fill factor [FF], 0.301). Moreover, the device further increased the conversion efficiency to 3.77% (Voc, 330 mV; Jsc, 28.60 mA/cm2; and FF, 0.399) with passivation of the CuInSe2 surface with various iodine concentrations. Surface recombination decreased from 2.328 × 103 cm/S to 1.947 × 103 cm/S. (ii) CuInSe2 nanowire (NW) was investigated with electric field traction metal ions in electrolyte and AAO nanochannel restriction ion diffusion. The nucleation mechanism, crystal quality, pore–filling ratio, and grain size of CuInSe2 NW were determined. Subsequently, transmission electron microscopy, selected-area electron diffraction, and ultraviolet–visible spectroscopy were conducted to reveal the CuInSe2 NW structure, crystal phase, and quantum effect. At this point, platinum and silver metals were utilized to form Ohmic contact and Mott–Schottky plots. A p-type semiconductor, the CuInSe2 NW was a surface modified through titration with PEDOT that contained different concentrations of dimethyl sulfoxide. Finally, the Schottky diode and PEDOT/CuInSe2 core–shell structure devices were investigated for their carrier transfer mechanism, carrier recombination ratio, and energy band, including the second-phase generation for their resultant recombination.

    摘要 I Abstract III Content VI List of Figures VIII List of Tables XII Chapter 1 Introduction 1 1.1 Motive 1 1.2 Characteristic of CuInSe2 material 3 1.3 Objective 4 1.4 Organization 7 Chapter 2 Background theory 9 2.1 Theory of solar cell 9 2.1.1 Spectral Distribution of Solar Radiation 9 2.1.2 Photoelectric effect of semiconductor 11 2.1.3 Solar cell characterization 12 2.2 Electrodeposition principle and application 15 2.2.1 Electrodeposition principle 15 2.2.2 Effect of electrodeposition factor 17 2.3 Anodized aluminum oxide (AAO) template 18 Chapter 3 Experiments 22 3.1 Fabrication of Cd1-x:B/CuInSe2 thin film solar cell 22 3.2 Fabrication of anodized aluminum oxide (AAO) template 24 3.3 Fabrication of CuInSe2 nanowire arrays and core-shell structure 25 3.3.1 CuInSe2 nanowire arrays with core–shell structure 25 3.3.2 Fabrication of single phase CuInSe2 Nanowire Arrays through annealing 26 3.4 Characterization techniques 27 3.4.1 Photoluminescence (PL) 27 3.4.2 Scanning Electron Microscope (SEM) 27 3.4.3 X-ray diffraction (XRD) 28 3.4.4 Ultraviolet –Visible spectrophotometer (UV-VIS) 28 3.4.5 Hall effect measurement 29 3.4.6 Solar cell device measurement 30 Chapter 4 Results and discussion 31 4.1 Fabrication of Cd1-x:B/CuInSe2 thin film solar cell 31 4.2 Investigation of CuInSe2 nanowire arrays with core–shell structure electrodeposited at various duty cycles into anodic alumina templates 42 4.3 Fabrication of Single phase p-CuInSe2 Nanowire Arrays by Electrodeposited into Anodic Alumina Templates 49 4.4 Characteristics of Quantum Dots and Single-Phase p-CuInSe2 Nanowire Arrays electrodeposited as Schottky Diodes with a Silver Contact 54 Chapter 5 Conclusion 66 Reference 69 Publication List 82 Vita 84

    1. M. A. Green, Y. Hishikawa, W.m Warta, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, A. W.Y. Ho‐Baillie, "Solar cell efficiency tables (version 50)", Received: 12 May, 2017.
    2. K. Yoshikawa, H. Kawasaki, W. Yoshida, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%”. Nature Energy 2, 17032, 2017.
    3. J. Benick, A. Richter, R. Müller, “High‐efficiency n‐type HP mc silicon solar cells”, IEEE Journal of Photovoltaics. (submitted)
    4. M. M. Moslehi, P. Kapur, J. Kramer, V. Rana, S. Seutter, A. Deshpande, T. Stalcup, S. Kommera, J. Ashjaee, A. Calcaterra, D. Grupp, D. Dutton, R. Brown. "World‐record 20.6% efficiency 156 mm x 156 mm full‐square solar cells using low‐cost kerfless ultrathin epitaxial silicon & porous silicon lift‐off technology for industry‐leading high‐performance smart PV modules", PV Asia Pacific Conference (APVIA/PVAP), 24 October, 2012.
    5. M. J. Keevers, T. L. Young, U. Schubert, M. A. Green, "10% efficient CSG minimodules" 22nd European Photovoltaic Solar Energy Conference, Milan, September, 2007.
    6. B. M. Kayes, H. Nie, R. Twist, S. G. Spruytte, F. Reinhardt, I. C. Kizilyalli, G. S. Higashi, "27.6% conversion efficiency, a new record for singlejunction solar cells under 1 sun illumination", Proceedings of the 37th IEEE Photovoltaic Specialists Conference, 2011.
    7. R. Venkatasubramanian, B. C. O'Quinn, J.S. Hills, P. R. Sharps, M. L. Timmons, J. A. Hutchby, H. Field, A. Ahrenkiel, B. Keyes, "18.2% (AM1.5) efficient GaAs solar cell on optical‐grade polycrystalline Ge substrate", Conference Record, 25th IEEE Photovoltaic Specialists Conference, Washington, May 31–36, 1997.
    8. M. Wanlass, "Systems and methods for advanced ultra‐high‐performance InP solar cells", US Patent 9,590,131 B2, 7 March, 2017.
    9. T. Kato, A. Handa, T. Yagioka, T. Matsuura, K. Yamamoto, S. Higashi, J‐L. Wu, K. F. Tai, H. Hiroi, T. Yoshiyama, T. Sakai, H. Sugimoto, "Enhanced efficiency of Cd‐free Cu(In,Ga)(Se,S)2minimodule via (Zn,Mg)O second buffer layer and alkali post treatment", 44th IEEE Photoovltaic Specialists Conference, Washington DC, 25–30 June, 2017.
    10. First Solar Press Release, First solar builds the highest efficiency thin film PV cell on record, 5 August, 2014.
    11. K. Sun, C. Yan, F. Liu, "Beyond 9% efficient kesterite Cu2ZnSnS4 solar cell: fabricated by using Zn1‐xCdxS buffer layer", Advanced Energy Materials. 6: 1600046, 2016.
    12. T. Matsui, H. Sai, T. Suezaki, M. Matsumoto, K. Saito, I. Yoshida, M. Kondo, "Development of highly stable and efficient amorphous silicon based solar cells. Proc", 28th European Photovoltaic Solar Energy Conference 2213–2217, 2013.
    13. H. Sai, K. Maejima, T. Matsui, "Effect of front TCO layer on properties of substrate‐type thin‐film microcrystalline silicon solar cells. IEEE Journal of Photovoltaics", 5(6) 1528‐1533, 2015.
    14. W. S. Yang, J. H. Noh, N. J. Jeon, "High‐performance photovoltaic perovskite layers fabricated through intramolecular exchange", Science, 348(6240) 1234‐1237, 2015.
    15. http://microquanta.com/newsitem/277743967.
    16. R. Komiya, A. Fukui, N. Murofushi, N. Koide, R. Yamanaka, H. Katayama, "Improvement of the conversion efficiency of a monolithic type dye‐sensitized solar cell module", Technical Digest, 21st International Photovoltaic Science and Engineering Conference, Fukuoka, November; 2C‐5O‐08, 2011.
    17. M. Kawai, "High‐durability dye improves efficiency of dye‐sensitized solar cells", Nikkei Electronics, Feb. 1, 2013.
    18. S. Mori, H. Oh‐oka, H. Nakao, "Organic photovoltaic module development with inverted device structure", MRS Proceedings, 1737, 2015.
    19. M. Hosoya, H. Oooka, H. Nakao, T. Gotanda, S. Mori, N. Shida, R. Hayase, Y. Nakano, M. Saito, "Organic thin film photovoltaic modules", Proceedings of the 93rd annual meeting of the chemical Society of Japan, 21–37, 2013.
    20. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, ‘‘New world record efficiency for Cu (In, Ga) Se2 thinfilmsolar cells beyond 20%’’, Prog. Photovoltaics Progress in Photovoltaics: Research and Applications 19, (2011), pp. 894-897.
    21. MiaSole press Release, MiaSole, Dec. 2, 2010.
    22. E. A. Hernández-Pagán, W. Wang, T. E. Mallouk, Template electrodeposition of single-phase p- and n-type copper indium diselenide (CuInSe2) nanowire arrays," J. Am. Chem. Soc 5, 3237-3241, 2015.
    23. R. Herberholz, H.W. Schock, U. Rau, J.H.Werner, "NEW ASPECTS OF PHASE SEGREGATION AND JUNCTION FORMATION IN CulnSe", 26th PVSC; Sept., 30-0ct. 3, 1997.
    24. T.Nakada, Nano-structural investigations on Cd-doping into Cu(In,Ga)Se2 thin films by chemical bath deposition process, Thin Solid Films 361-362, 346-352, 2000.
    25. T. Nakada, A. Kunioka, Direct evidence of Cd diffusion into Cu(In, Ga)Se2 thin films during chemical-bath deposition process of CdS films, Appl. Phys. Lett. 74, 2444, 1999.
    26. C. Guillén, M.A.Martínez, J. Herrero, Accurate control of thin film CdS growth process by adjusting the chemical bath deposition parameters, Thin Solid Films 335, 37, 1998.
    27. M. T. S. Nair, P. K. Nair, J. Campos, Effect of bath temperature on the optoelectronic characteristics of chemically deposited CdS thin films, Thin Solid Films 161, 21, 1988.
    28. H. Metin, R. Esen, Annealing effects on optical and crystallographic properties of CBD grown CdSfilms,Semicond. Sci. Technol. 18, 647, 2003.
    29. D. Appell, Nanotechnology. Wired for success Nature 419 553, 2000.
    30. H. A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices Nat. Mater. 9, 205-213, 2010.
    31. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, H. A. Atwater, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications Nat. Mater. 9, 239-244, 2010.
    32. C. L. Hsin, W. F. Lee, C. T. Huang, C. W. Huang, W. W. Wu, L. J. Chen,1 Growth of CuInSe2 In2Se3/CuInSe2 Nano-Heterostructures through Solid State Reactions Nano Lett. 11, 4348-4351, 2011.
    33. L. J. Chen, J. D. Liao, Y. J. Chuang, Y. S. Fu, Synthesis and Characterization of Cu(InxB1−x)Se2 Nanocrystals for Low-Cost Thin Film Photovoltaics J. Am. Chem. Soc. 133 3704-3707, 2011.
    34. W. C. Kwak, S. H. Han, T. G. Kim, Y. M. Sung, Electrodeposition of Cu(In,Ga)Se2 Crystals on High-Density CdS Nanowire Arrays for Photovoltaic Applications Cryst. Growth Des. 10, 5297-5301, 2010.
    35. L. Shi, C. Pei, Q. Li, Fabrication of ordered single-crystalline CuInSe2 nanowire arrays Crystengcomm, 12, 3882-3885, 2010.
    36. C. H. Liu, C. H. Chen, S. Y. Chen, Y. T. Yen, W. C. Kuo, Y. K. Liao, J.-Y. Juang, H. C. Kuo, C. H. Lai, L. J. Chen, Y. L. Chueh, Large Scale Single-Crystal Cu(In,Ga)Se2Nanotip Arrays For High Efficiency Solar Cell Nano Lett. 11, 4443-4448, 2011.
    37. J. Chen, H. Ye, L. Ae, Y. Tang, D. Kieven, T. Rissom, J. Neuendorf, M. C. Lux-Steiner, Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications Sol. Energy Mater. Sol. Cells, 95, 1437-1440, 2011.
    38. P. K. Hung, T. H. Lin, M. P. Houng, Characteristics of CuInSe2 Nanowire Arrays Electrodeposited into Anodic Alumina Templates with Dimethyl Sulfoxide (DMSO) Additive J. Electrochem. Soc. 161(3), D79–D86, 2014.
    39. A. Gobeaut, L. Laffont, J. M. Tarascon, L. Parissi, O. Kerrec, Influence of secondary phases during annealing on re-crystallization of CuInSe2 electrodeposited films Thin Solid Films, 517, 4436–4442, 2009.
    40. G. D. Mooney, A. M. Hermann, Formation of CuInSe2 thin films by rapid thermal recrystallization Appl.Phys. Lett. 58, 2678, 1991.
    41. J. F. Guillemoles, P. C., A. Lusson, K. Fezzaa, F. Boisivon, J. Vedel, D. Lincot, One step electrodeposition of CuInSe2: Improved structural, electronic, and photovoltaic properties by annealing under high selenium pressure, J. Appl. Phys. 79, 7293, 1996.
    42. A. T. Mecherikunnel, J. C. Richmond, “pectral Distribution of Solar Radiation, National Aeronautics and Space Administration, September 1980.
    43. M. A. Green, Solar Cells: Operating Principles, Technology and Systems Applications, Prentice Hall, NJ, USA, 1982.
    44. J. P. Villagrasa, J. C. Farrarons, P. L. Miribel, Bioelectronics for Amperometric Biosensors, book edited by ToonikaRinken, ISBN 978-953-51-1004-0, March 13, 2013.
    45. H. Yoshida, M. Sone, A. Mizushima, K. Abe, X. T. Tao, S. Ichihara, S. Miyata, Electroplating of Nanostructured Nickel in Emulsion of Supercritical Carbon Dioxide in Electrolyte Solution, Chemistry Letters 11, 1086-1087, 2002.
    46. R. W. Revie, H. H.Uhlig, Corrosion and corrosion control, John Wiley & Sons, 2008.
    47. D. Almawlawi, K. A. Bosnick, A. Osika, and M. Moskovits, Fabrication of Nanometer-Scale Patterns by Ion-Milling with Porous Anodic Alumina Masks, Advanced Materials, 12, 1252-1257, 2000.
    48. A. P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina, Journal of Applied Physics, 84, 6023-6026, 1998.
    49. H. Masuda, K. Yada, A. Osaka, Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution, Japanese Journal of Applied Physics, 37, L1340-L1342, 1998.
    50. H. Masuda, K. Fukuda, Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina, Science, 268, 1466-14681, 1995.
    51. H. Masuda, F. Hasegwa, S. Ono, Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution, Journal of The Electrochemical Society, 144, L127-L130, 1997.
    52. A. L. Friedman, D. Brittain, L. Menon, Roles of pH and acid type in the anodic growth of porous alumina, The Journal of Chemical Physics, 127, 154717-1-7, 2007.
    53. G. D. Sulka, K. G. Parkoła, Temperature influence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid, Electrochim. Acta, 52, 1880-1888, 2007.
    54. S. Ono, M. Saito, M. Ishiguro, H. Asoh, Controlling factor of self-ordering self-ordering of anodic porous alumina, Journal of The Electrochemical Society, 151, B473-B478, 2004.
    55. V. P. Parkhutik V. I. Shershulsky, Theoretical modeling of porous oxide growth on aluminum, Journal of Physics D: Applied Physics, 25, 1258-1263, 1992.
    56. O. Jessensky, F. Muller, U. Gosele, Self-organized formation of hexagonal pore arrays in anodic alumina. Applied Physics Letters, Mar; 72(10):1173-5, 1998.
    57. J. P. OSullivan, G. C. Wood, The morphology and mechanism of formation of porous anodic films on aluminum, Proceedings of the Royal Society of London, 317, 511-543, 1970.
    58. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. Wiley, New York , 438-453, 1981.
    59. M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okai, K. Uomi, GaInNAs: A Novel Material for Long-WavelengthSemiconductor Lasers, IEEE Journal of Selected Topics in Quantum Electronics Quantum Electron,. 3, 719-730, 1997.
    60. R. Shawabkeh, A. Al-Harahsheh, M. Hami, A. Khlaifat, Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater, Fuel. 83, 981–985, 2004.
    61. D. Sundholm, J. Olsen, Large MCHF calculations on the electron affinity of boron, Chemical Physics Letters. 171, 53-57, 1990.
    62. J. G. Lu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, L. Wang, J. Yuan, B. Zhao, Q. L. Liang, Structural, optical, and electrical properties of (Zn,Al)O films over a wide range of compositions, Journal of Applied Physics, 100, 073714, 2006.
    63. S. Phok, S. Rajaputra, V. P Singh, copper indium diselenide nanowire arrays by electrodeposition in porous alumina templates, Nanotechnology 18, 475601, 2007.
    64. J. F. Guillemoles, P. Cowache, A. Lusson, K. Fezzaa, F. Boisivon,J. Vedel,D. Lincot, One step electrodeposition of CuInSe2: Improved structural, electronic, and photovoltaic properties by annealing under high selenium pressure, Journal of Applied Physics, 79, 7293, 1996.
    65. F. J. Pern, R. Noufi, A. Mason, A. Franz, Characterizations of electrodeposited CuInSe2 thin films: Structure, deposition and formation mechanisms, Thin Solid Films. 202, 299–314, 1991.
    66. W. Lu, C. Ou, P. Huang, P. Yan, B. Yan, Effect of pH on the Structural Properties of Electrodeposited Nano crystalline FeCo Films, International Journal of Electrochemical Science, 8, 8218–8226, 2013.
    67. B. D. Cullity, Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley,Menlo Park, CA., 1997).
    68. G. A. Medvedkin, M. A. Magomedov, Extrinsic photoresponse and photoluminescence of CuInSe2 crystals grown with a deviation from valence stoichiometry, Journal of Applied Physics, 82, 4013, 1997.
    69. C. Rincon, S. M. Wasim, E. Hernandez, M. A. Arsene, F. Voillot, J. P.Peyrade, G. Bacquet, A. Albacete, Photoluminescence in p-type CuInse2 single crystals, Journal of Physics and Chemistry of Solids, 59, 245-252, 1998.
    70. J. L. Freeouf, J. M. Woodall, Schottky barriers: An effective work function model, Applied Physics Letters, 39, 727, 1981.
    71. J. Bardeen, Surface States and Rectification at a Metal Semi-Conductor Contact, American Physical Society, Physical Review Letters, 71, 717, 1947.
    72. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, New world record efficiency for Cu(In,Ga)Se2 thin-filmsolar cells beyond 20%, Progress in Photovoltaics: Research and Applications, 19, 894897, 2011.
    73. Z. Jehl, M. Bouttemy, D. Lincot, J. F. Guillemoles, I. Gerard, Insights on the influence of surface roughness on photovoltaic properties of state of the art copper indium gallium diselenide thin films solar cells, Journal of Applied Physics, 111, 114509, 2012.
    74. R. Scheer, Activation energy of heterojunction diode currents in the limit of interface recombination, Journal of Applied Physics, 105, 104505, 2009.
    75. K. N. Boer, Polycrystalline semiconductor heterojunction modeling CdS/CuInSe2, Solar Cells. 16, 591-609, 1986.
    76. S. Olibet, E. Vallat-Sauvain, C. Ballif, Model for a-Si:H/c-Si interface recombination based on the amphoteric nature of silicon dangling bonds, Physical Review B, : 76, 035326, 2007.
    77. G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H. F. W. Dekkers, S. De Wolf, G. Beaucarne, Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge, Solar Energy Materials and Solar Cells, 90, 3438, 2006.
    78. T. H. Wang, E. Iwaniczko, M. R. Page, D. H. Levi, Y. Yan,H. M. Branz, Q. Wang, Effect of emitter deposition temperature on surface passivation in hot-wire chemical vapor deposited silicon heterojunction solar cells, Thin Solid Films, 501, 284, 2006.
    79. A. Froitzheim, K. Brendel, L. Elstner, W. Fuhs, K. Kliefoth, M. Schmidt, Interface recombination in heterojunctions of amorphous and crystalline silicon, Journal of Non-Crystalline Solids, 299, 663, 2002.
    80. H. P. Zhou, D. Y. Wei, S. Xu, S. Q. Xiao, L. X. Xu, S. Y. Huang, Y. N. Guo, S. Khan, M. Xu, Amorphous/crystalline silicon heterojunction solar cells via remote inductively coupled plasma processing, Journal of Physics D: Applied Physics, 45, 395401, 2012.
    81. Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba,T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, M. Tanaka, Twenty-two percent efficiency HIT solar cell, Solar Energy Materials and Solar Cells, 93, 670-673, 2009.
    82. K. C. Huang, C. L. Liu, P. K. Hung, M. P.Houng, Influence of copper concentration in solutions on the growth mechanism and performance of electrodeposited Cu(In,Al)Se2 solar cells, Solar Energy Materials and Solar Cells, 128, 27-35, 2014.
    83. A. Resfa, Y. S.Bourzig, B. R.Menezla, Study and modeling of the transport mechanism in a Schottky diode on the basis of a GaAs semiinsulator, Journal of Semiconductors, 32, 12004, 2011.
    84. R. K. Gupta, K. Ghosh, P. K. Kahol, Effect of temperature on current–voltage characteristics of Cu2O/p-Si Schottky diode, Physica E, 41, 876, 2009.
    85. W. Yu, C. S. Wang, W. B. Lu, S. K. Cui, Deposition of n-type nanocrystalline SiC films and current transport mechanisms in nano-crystalline SiC/crystalline Si heterojunctions, Solid State Communications, 143, 228, 2007.
    86. M. Ju, Y. J. Lee, K. Lee, C. Han, Y. Jo, J. Yi, Effectiveness of Iodine Termination for Ultrahigh Efficiency Solar Cells as a Means of Chemical Surface Passivation, Japanese Journal of Applied Physics, 51, 09MA03, 2012.
    87. S. Shin, B. S. Kim, K. M. Kim, B. H. Kong, H. K. Cho, H. H. Cho, Tuning the morphology of copper nanowires by controlling the growth processes in electrodeposition, : Journal of Materials Chemistry Home, 21, 17967-17971, 2011.
    88. W. J. Li, W. L. Yu, C. Y. Yen, Pulsed electrodeposition of Bi2Te3 and Bi2Te3/Te nanowire arrays from a DMSO solution, Electrochimica Acta, 58, 510-515, 2011.
    89. S. J. Limmer, W. G. Yelton, M. P. Siegal, J. L. Lensch-Falk, J. Pillars, D. L. Medlin, Electrochemical Deposition of Bi2(Te,Se)3 Nanowire Arrays on Si, Journal of The Electrochemical Society, 159, D235-D239, 2012.
    90. W. Wang, S. Y. Wang, Y. L. Gao, K. Y. Wang, M. Liu, Nickel sulfide nanotubes formed by a directional infiltration self-assembly route in AAO templates, Materials Science and Engineering: B, 133, 167-171, 2006.
    91. C. Ruan, M. Paulose, O. K. Varghese, G. K. Mor, C. A. Grimes, Fabrication of Highly Ordered TiO2 Nanotube Arrays Using an Organic Electrolyte, The Journal of Physical Chemistry B, 109, 15754-15759, 2005.
    92. R. Chen, D. Xu, G. Guo, L. Gui, Preparation of Ag2Se and Ag2Se1 − xTex nanowires by electrodeposition from DMSO baths, Electrochemistry Communications, 5, 579-583, 2003.
    93. D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui, Y. Tang, Preparation and characterization of CdS nanowire arrays by dc electrodeposit in porous anodic aluminum oxide templates, Chemical Physics Letters, 325, 340-344, 2000.
    94. L. Hsin, W. F. Lee, C. T. Huang, C. W. Huang, W. W. Wu, L. J. Chen, Growth of CuInSe2 and In2Se3/CuInSe2 Nano-Heterostructures through Solid State Reactions, Nano Letters, 11, 4348-4351, 2011.
    95. B. D. Cullity, Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley,Menlo Park, CA, 1997).
    96. S. Phok, S. Rajaputra, V. P Singh, Copper indium diselenide nanowire arrays by electrodeposition in porous alumina templates, Nanotechnology 18, 475601, 2007.
    97. J. F. Guillemoles, P. Cowache, A. Lusson, K. Fezzaa, F. Boisivon, J. Vedel, D. Lincot, One step electrodeposition of CuInSe2: Improved structural, electronic, and photovoltaic properties by annealing under high selenium pressure, Journal of Applied Physics, 79, 7293, 1996.
    98. Y. S. Cheng, H. J. Lang, M. P. Houng, Fabrication of single phase p-CuInSe2 nanowire arrays by electrodeposited into anodic alumina templates, Applied Physics Letters, 107, 162103, 2015.
    99. L. Höglund, D. Z. Ting, A. Khoshakhlagh, A. Soibel, A. Fisher, C. J. Hill, S. Keo, S. Rafol, S. D. Gunapala, Influence of proton radiation on the minority carrier lifetime in midwave infrared InAs/InAsSbsuperlattices, Applied Physics Letters, 108, 263504, 2016.
    100. Paul M. Jordan, Daniel K. Simon, T. Mikolajick, I. Dirnstorfer, Trapped charge densities in Al2O3-based silicon surface passivation layers, Journal of Applied Physics, 119, 215306, 2016.
    101. M. V. Yakushev, A. V. Mudryi, O. M. Borodavchenko, V. A. Volkov, R. W. Martin, A photoluminescence study of excitonic grade CuInSe2 single crystals irradiated with 6 MeV electrons, Journal of Applied Physics, 118, 155703, 2015.
    102. S. Phok, S. Rajaputra, V. P. Singh, Copper Indium Diselenide Nanowire Arrays by Electrodeposition in Porous Alumina Templates. Nanotechnology, 18, 475601, 2007.
    103. J. Guillemoles, P. C. Cowache, A. Lusson, K. Fezzaa, F. Boisivon, J. Vedel, D. Lincot, One Step Electrodeposition of CuInSe2: Improved Structural, Electronic, and Photovoltaic Properties by Annealing under High Selenium Pressure, Journal of Applied Physics, 79, 7293–7302, 1996.
    104. F. J. Pern, R. Noufi, A. Mason, A. Franz, Characterizations of Electrodeposited CuInSe2 Thin Films Structure Deposition and Formation Mechanisms, Thin Solid Films, 202, 299–314, 1991.
    105. B. D. Cullity, Elements of X-Ray Diffraction 2nd edn (Menlo Park, CA: Addison-Wesle,1997).
    106. D. Moldovan, V. Yamakov, D. Wolf and S. R. Phillpot, Scaling behavior of grain-rotation-induced grain growth, Physical Review Letters, 89, 206101, 2002.
    107. E. R. Leite, T. R. Giraldi, F. M. Pontes, E. Longo, Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature, Applied Physics Letters, 83, 1566, 2003.
    108. L. Shi, P. Yin, L. Wang and Y. Qian, Fabrication of single-crystalline CuInS2 nanowires array via a diethylenetriamine-thermal route, CrystEngComm, 14, 7217–7221, 2012.
    109. J. Bardeen, Physical Review, 71, 717, 1947.
    110. E. A. Hernández-Pagán, W. Wang, T. E. Mallouk, Template Electrodeposition of Single-Phase p- and n-Type Copper Indium Diselenide (CuInSe2) Nanowire Arrays, Journal of the American Chemical Society, 5(4), 3237-3241, 2011.
    111. A. Gobeaut, L. Laffont, J. M. Tarascon, L. Parissi, and O. Kerrec, Influence of Secondary Phases during Annealing on Re-crystallization of CuInSe2 Electrodeposited Films, Thin Solid Films, 517, 4436–4442, 2009.
    112. G. D. Mooney, A. M. Hermann, Formation of CuInSe2 thin films by rapid thermal recrystallization, Applied Physics Letters, 58, 2678, 1991.
    113. J. F. Guillemoles, P. C., A. Lusson, K. Fezzaa, F. Boisivon, J. Vedel, D. Lincot, One step electrodeposition of CuInSe2: Improved structural, electronic, and photovoltaic properties by annealing under high selenium pressure, Journal of Applied Physics, 79, 7293,1996.
    114. S. Phok, S. Rajaputra, V. P Singh, Copper indium diselenide nanowire arrays by electrodeposition in porous alumina templates, Nanotechnology, 18, 475601, 2007.
    115. B. D.Cullity, Elements of X-Ray Diffraction 2nd edn (Menlo Park, CA: Addison-Wesley, 1997).
    116. H. Matsushita, H. Jitsukawa, T. Takizawa, Thermal analysis of the chemical-reaction process for CuGa1−xInxSe2 crystals, Journal of Crystal Growth, 166, 712-717, 1996.
    117. A. Chevy, A.Kuhn, M. S.Martin, Large InSe monocrystals grown from a non-stoichiometric melt, Journal of Crystal Growth, 38, 118-122, 1977.
    118. E. Mafi, A. Soudi, Y. Gu, Electronically Driven Amorphization in Phase-Change In2Se3 Nanowires, The Journal of Physical Chemistry C, 116 (42), 22539-22544, 2012.
    119. D. Moldovan, V. Yamakov, D. Wolf, S. R. Phillpot, Scaling Behavior of Grain-Rotation-Induced Grain Growth, Physical Review Letters, 89, 206101, 2002.
    120. E. R. Leite, T. R. Giraldi, F. M. Pontes, E. Longo, A. Beltran, Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature, Applied Physics Letters, 83, 1566, 2003.
    121. L. Shi, P. Yin, L. Wang, Y. Qian, Fabrication of single-crystalline CuInS2 nanowires array via a diethylenetriamine-thermal route, CrystEngComm 14, 7217–7221, 2012.
    122. D. Moldovan, V. Yamakov, D. Wolf, S. R. Phillpot, Scaling Behavior of Grain-Rotation-Induced Grain Growth, Physical Review Letters, 89, 206101, 2002.
    123. E. R. Leite, T. R. Giraldi, F. M. Pontes, E. Longo, Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature, Applied Physics Letters, 83, 1566, 2003.
    124. A. P. Alivisatos, Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science, New Series, 271, 5251, 933-937, 1996.
    125. J. Du, Z. Du, J. S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong, L. J. Wan, Zn–Cu–In–Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%, Journal of the American Chemical Society, 138, 4201−4209, 2016.
    126. M. G. Panthani, C. J. Stolle, D. K. Reid, D. J. Rhee, T. B. Harvey, V. A. Akhavan, Y. Yu, B. A. Korgel, CuInSe2 Quantum Dot Solar Cells with High Open-Circuit Voltage, The Journal of Physical Chemistry Letters, 4 (12), 2030–2034, 2013.
    127. K. Hong, J. L. Lee, Inverted Top-Emitting Organic Light-Emitting Diodes Using Transparent Silver Oxide Anode Formed by Oxygen Plasma, Electrochem Solid-State Lett, 11 (2), H29-H31, 2008.
    128. M. Akbi, A. Bouchouc, N. Zouachea, Effects of vacuum heat treatment on the photoelectric work function and surface morphology of multilayered silver–metal electrical contacts, Applied Surface Science, 303, 131-139, 2014.
    129. Y. S. Cheng, N. F. Wang, Y. Z. Tsai, J. J. Lin, and M. P. Houng, Investigation of CuInSe2 nanowire arrays with core-shell structure electrodeposited at various duty cycles into anodic alumina templates, Applied Surface Science, 396, 631–636, 2017.
    130. H. C. Sio, T. Trupke, D. Macdonald, Quantifying carrier recombination at grain boundaries in multicrystalline silicon wafers through photoluminescence imaging, Journal of Applied Physics, 116, 244905, 2015.
    131. J. C. Sung, C. H. Lu, Potassium-ion doped Cu(In,Ga)Se2 thin films solar cells: Phase formation, microstructures, and photovoltaic characteristics, Applied Surface Science, 409, 270–276, 2017.
    132. J. Bardeen, Surface States and Rectification at a Metal Semi-Conductor Contact, American Physical Society, Physical Review, 71, 717, 1947.

    無法下載圖示 校內:2023-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE