簡易檢索 / 詳目顯示

研究生: 張瑋珊
Chang, Wei-Shan
論文名稱: 考慮製程品質和模糊需求之經濟批量模式
An Economic Production Quantity Model Considering Process Quality and Fuzzy Demand
指導教授: 陳梁軒
Chen, Liang-Hsuan
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 85
中文關鍵詞: 品質損失函數製程變異模糊數需求不確定存貨
外文關鍵詞: Variance of the process, Quality loss function, Fuzzy numbers, Uncertainty of demend, Inventory
相關次數: 點閱:93下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 存貨管理在企業的經營中,始終扮演著相當重要的角色。在實務上,一個存貨管理者最直接面對到的問題就是需求的不確定性。在過去有關需求不確定的存貨研究中,經濟訂購批量存貨模型是一重要研究議題,因此本研究主要考慮需求在不確定下的批量生產存貨政策,並使用模糊數來表達需求的不確定性,分別探討不允許缺貨以及允許缺貨之經濟批量生產模式。
    過去有一些研究分析了生產經濟性與製程品質之間的關係,但大多將品質侷限於傳統二分法的觀點,亦即當產品的品質超出規格界限就加以拒絕,否則一律接受。然而,此理論忽略了品質損失的重要性,較無法達成品管改善之要求,故本研究將以田口二次損失函數為基礎之二次截斷不對稱型損失函數納入經濟生產模式中,假設超出規格界限的損失不同,並考慮偏移製程平均值以最小化期望品質損失,進而使模式更一般化且更具應用性。
    另外,本研究並考慮藉由投資來降低製程的變異,其中利用Hong 等人 (1993) 所提出製程變異之投資函數,納入總生產成本模式中考量,即投資後的製程變異為製程改善後所能降低的製程變異水準加上目前生產系統之最大變異水準與最低變異水準之差的指數分配關係,如此不僅能降低變異並提升製程能力指標,亦能讓管理者利用本模式來比較不同製程改善的成本差異,推導出最佳生產批量、缺貨量和投資成本,以提供存貨管理者對生產決策之參考依據。

    Inventory management plays an important role in business. In practice, the problem that inventory managers face directly to is the uncertainty of demand, which has been examined mostly in Economics Order Quantity models. Therefore, in this study we consider Economics Production Quantity models with and without backorders, using fuzzy numbers to deal with the uncertainty of demand.
    Although several studies have analyzed the interaction between the economics of production and process quality, most of them view quality from a very traditional perspective - reject when outside specified limits, and otherwise accept. However, with the importance of quality growing day by day, several views on quality have shown that such a definition greatly underestimates the costs of poor quality and leads to sub-optimal decisions. Hence, the primary intent in this paper is to revisit this interaction of the economics of production with process quality from a non-traditional yet more realistic 'Taguchi' quality cost perspective, but here we replace the quality loss function with the asymmetrical truncated quality loss function adopted by Tsou (2006).
    In addition, we represent the variance of the process as a function of investment, as proposed by Hong and Hayya (1993), to decrease the number of defective items. Our models determine the optimal production lot-size, the optimal levels of investments, and the optimal levels of backorders that minimize the sum of inventory and quality-related costs.

    摘要 I ABSTRACT II 誌謝 Ⅲ 目錄 Ⅳ 圖目錄 Ⅶ 表目錄 Ⅸ 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究方法 3 1.4 研究架構與流程 4 第二章 文獻探討 6 2.1 EPQ模式簡介 6 2.2 EPQ文獻探討 7 2.2.1 具不完美品質之 EPQ 模式 7 2.2.2 模糊理論在存貨模式之應用 8 2.3 品質損失簡介 9 2.3.1 品質的定義與品質成本 9 2.3.2 品質損失函數 10 2.3.3 品質損失類型 11 2.4 品質損失相關研究 15 2.4.1 考慮品質投資之EPQ模式 15 2.4.2不對稱型損失函數 16 2.5 模糊理論 17 2.5.1 模糊集合的定義 17 2.5.2 模糊數的定義 18 2.5.3 模糊數的基本運算 20 2.5.4 Yager 排序法 21 第三章 考慮製程品質和模糊需求之經濟批量模式構建 23 3.1 參數符號的定義 23 3.2 問題範圍與界定 24 3.3 確定需求下考慮品質損失在不允許缺貨之存貨模式 29 3.3.1 模式之基本假設 30 3.3.2 模式之建立 30 3.4 確定需求下考慮品質損失在允許缺貨之存貨模式 35 3.5 模糊需求下考慮品質損失在不允許缺貨之存貨模式 38 3.6 模糊需求下考慮品質損失在允許缺貨之存貨模式 41 第四章 模式證明與模擬 47 4.1 模式之數學證明 47 4.2 數據模擬 54 4.2.1 模式Ⅰ之數據模擬 54 4.2.2 模式Ⅱ之數據模擬 59 4.2.3 模式Ⅲ之數據模擬 60 4.2.4 模式Ⅳ之數據模擬 61 4.3 參數之敏感度分析 63 第五章 結論與未來研究方向 67 5.1 結論 67 5.2 未來研究方向 68 附錄A 69 附錄B 71 參考文獻 73

    一、中文部分
    方世榮譯,生產管理,曉園出版社,民國77年。
    李允中、王小璠、蘇木春著,模糊理論及其應用,全華科技圖書股份有限公司,民國93年。
    李旭華著,品質管理,滄海書局,民國92年。
    洪振創、湯玲郎著,物料管理,高立圖書有限公司,民國91年。
    許江圳,考慮田口損失下之最佳經濟生產批量,成功大學工業管理研究所碩士論文,民國91年。
    陳穎哲,考慮模糊需求之損耗性商品存貨控制模式,成功大學工業管理科學研究所碩士論文,民國92年。
    羅錦興著,品質設計工程指引,中國生產力中心,民國90年。
    二、英文部分
    Barker, T. B., Engineering Quality by Design: Interpreting the Taguchi Approach, Marcel Dekker, 1990.
    Barker, T. B., Quality Engineering by Design: Taguchi's Philosophy, Quality Progress, 19 (12), 32-42, 1986.
    Chang, S. C., Fuzzy Production Inventory for Fuzzy Product Quantity with Triangular Fuzzy Number, Fuzzy Sets and Systems, 107, 37-57, 1999.
    Chan, W. M., Ibrahim, R. N. and Lochert, P. B., A New EPQ Model: Integrating Lower Pricing, Rework and Reject Situations, Production Planning & Control, 14, 588-595, 2003.
    Chen, J. M. and Tsou, J. C., An Optimal Design for Process Quality Improvement: Modelling and Application, Production Planning & Control, 14 (7), 603-612, 2003.
    Chiu, Y. P., Determining the Optimal Lot Size for the Finite Production Model with Random Defective Rate, the Rework Process, and Backlogging, Engineering Optimization, 35 (4), 427-437, 2003.
    Dutta, C., Chakraborty, D. and Roy, A. R., Continuous Review Inventory Model in Mixed Fuzzy and Stochastic Environment, Applied Mathematics and Computation, 188, 970-980, 2007.
    Ganeshan, R., Kulkarni, S. and Boone, T., Production Economics and Process Quality: A Taguchi Perspective, International Journal of Production Economics, 71, 343-350, 2001.
    Hong, J. D., Xu, S. H. and Hayya, J. C., Process Quality Improvement and Setup Reduction in Dynamic Lot-Sizing, International Journal of Production Research, 31, 2693-2708, 1993.
    Hou, K. L., An EPQ Model with Setup Cost and Process Quality as Functions of Capital Expenditure, Applied Mathematical Modeling, 31, 10-17, 2007.
    Islam, S. and Roy, T. K., A Fuzzy EPQ Model with Flexibility and Reliability Consideration and Demand Dependent Unit Production Cost Under a Space Constraint: A Fuzzy Geometric Programming Approach, Applied Mathematics and Computation, 176, 531-544, 2006.
    Kao, C. and Hsu, W. K., Lot Size-Reorder Point Inventory Model with Fuzzy Demands, Computers and Mathematics with Applications, 43, 1291-1302, 2002.
    Lee, H. M., and Yao, J. S., Economic Production Quantity for Fuzzy Demand Quantity and Fuzzy Production Quantity, European Journal of Operational Research, 109, 203-211, 1998.
    Leon, R. V. and Wu, C.F., A Theory of Performance Measures in Parameter Design, Statistica Sinica, 2, 335-358, 1992.
    Li, M. H. C., Optimal Setting of the Process Mean for Asymmetrical Quadratic Quality Loss Function, Proceedings of the Chinese Institute of Industrial Engineers National Conference, 415-419, 1997.
    Li, M. H. C. and Maghsoodloo, S., Optimal Unbalanced Tolerance Design with Asymmetrical Loss Function, Proceedings of the 4th Industrial Engineering Research Conference, Nashville, 373-378, 1995.
    Li, M. H. C. and Maghsoodloo, S., Optimal Asymmetric Tolerance Design, IIE Transactions, 32, 1127-1137, 2000.
    Li, M. H. C., Quality Loss Function Based Manufacturing Process Setting Models for Unbalanced Tolerance Design, International Journal of Advanced Manufacturing Technology, 16 (1), 39-45, 2000.
    Li, M. H. C., Optimal Setting of the Process Mean for Asymmetrical Truncated Loss Function, Proceedings of the Chinese Institute of Industrial Engineers Conference, 532-537, 1998.
    Park, K. S., Fuzzy-Set Theoretic Interpretation of Economic Order Quantity, IEEE Transactions on Systems, Man and Cybernetics, 17 (6), 1082-1084, 1987.
    Porteus, E. L., Optimal Lot Sizing, Process Quality Improvement and Setup Cost Reduction, Operations Research, 34, 137-144, 1986.
    Roberts, A. W. and Varberg, D. E., Convex Functions, Academic Press, 1970.
    Rosenblatt, M. J. and Lee H. L., Economic Production Cycle with Imperfect Production Processes, IEEE Transactions, 18, 48-55, 1986.
    Roy, T. K. and Maiti, M., Multi-Objective Inventory Models of Deteriorating Items with Some Constraints in a Fuzzy Environment, Computers Operations, 25 (12), 1085-1095, 1998.
    Taguchi, G., Elsayed, E. A. and Hsiang, T., Quality Engineering in Production Systems, McGrall-Hill, 1989.
    Tribus, M. and Szonyi, G., An Alternative View of the Taguchi Approach, Quality Progress, 22 (5), 46-52, 1989.
    Tsou, J. C., Decision-Making on Quality Investment in a Dynamic Lot Sizing Production System, International Journal of Systems Science, 37 (7), 463-475, 2006.
    Vijayan, T. and Kumaran, M., Inventory Models with a Mixture of Backorders and Lost Sales Under Fuzzy Cost, European Journal of Operational Research, In Press, Corrected Proof, 1-22, 2007.
    Vujosevic, M., Petrovic, D. and Petrovic, R., EOQ Formula When Inventory Cost is Fuzzy, International Journal of Production Economics, 45, 499-504, 1996.
    Yager, R.R., A Procedure for Ordering Fuzzy Subsets of the Unit Interval, Information Sciences, 24, 143-161, 1981.

    下載圖示 校內:2011-06-19公開
    校外:2012-06-19公開
    QR CODE